22,449 research outputs found
Evidence of Skyrmion excitations about in n-Modulation Doped Single Quantum Wells by Inter-band Optical Transmission
We observe a dramatic reduction in the degree of spin-polarization of a
two-dimensional electron gas in a magnetic field when the Fermi energy moves
off the mid-point of the spin-gap of the lowest Landau level, . This
rapid decay of spin alignment to an unpolarized state occurs over small changes
to both higher and lower magnetic field. The degree of electron spin
polarization as a function of is measured through the magneto-absorption
spectra which distinguish the occupancy of the two electron spin states. The
data provide experimental evidence for the presence of Skyrmion excitations
where exchange energy dominates Zeeman energy in the integer quantum Hall
regime at
Exact Nonperturbative Unitary Amplitudes for 1->N Transitions
I present an extension to arbitrary N of a previously proposed field
theoretic model, in which unitary amplitudes for processes were
obtained. The Born amplitude in this extension has the behavior
expected in a bosonic field theory. Unitarity
is violated when , or when Numerical
solutions of the coupled Schr\"odinger equations shows that for weak coupling
and a large range of N>\ncrit, the exact unitary amplitude is reasonably fit
by a factorized expression |A(1->N)| \sim (0.73 /N) \cdot \exp{(-0.025/\g2)}.
The very small size of the coefficient 1/\g2 , indicative of a very weak
exponential suppression, is not in accord with standard discussions based on
saddle point analysis, which give a coefficient The weak dependence
on could have experimental implications in theories where the exponential
suppression is weak (as in this model). Non-perturbative contributions to
few-point correlation functions in this theory would arise at order $K\ \simeq\
\left((0.05/\g2)+ 2\ ln{N}\right)/ \ ln{(1/\g2)}\g2.$Comment: 11 pages, 3 figures (not included
Solutions of Penrose's Equation
The computational use of Killing potentials which satisfy Penrose's equation
is discussed. Penrose's equation is presented as a conformal Killing-Yano
equation and the class of possible solutions is analyzed. It is shown that
solutions exist in spacetimes of Petrov type O, D or N. In the particular case
of the Kerr background, it is shown that there can be no Killing potential for
the axial Killing vector.Comment: To appear in J. Math. Phy
An Anderson-Fano Resonance and Shake-Up Processes in the Magneto-Photoluminescence of a Two-Dimensional Electron System
We report an anomalous doublet structure and low-energy satellite in the
magneto-photoluminescence spectra of a two-dimensional electron system. The
doublet structure moves to higher energy with increasing magnetic field and is
most prominent at odd filling factors 5 and 3. The lower-energy satellite peak
tunes to lower energy for increasing magnetic field between filling factor 6
and 2. These features occur at energies below the fundamental band of
recombination originating from the lowest Landau level and display striking
magnetic field and temperature dependence that indicates a many-body origin.
Drawing on a recent theoretical description of Hawrylak and Potemski, we show
that distinct mechanisms are responsible for each feature.Comment: 14 pages including 5 figures. To appear in the April 15th edition of
Phy. Rev. B. rapid com
Weak Gravitational Flexion
Flexion is the significant third-order weak gravitational lensing effect
responsible for the weakly skewed and arc-like appearance of lensed galaxies.
Here we demonstrate how flexion measurements can be used to measure galaxy halo
density profiles and large-scale structure on non-linear scales, via
galaxy-galaxy lensing, dark matter mapping and cosmic flexion correlation
functions. We describe the origin of gravitational flexion, and discuss its
four components, two of which are first described here. We also introduce an
efficient complex formalism for all orders of lensing distortion. We proceed to
examine the flexion predictions for galaxy-galaxy lensing, examining isothermal
sphere and Navarro, Frenk & White (NFW) profiles and both circularly symmetric
and elliptical cases. We show that in combination with shear we can precisely
measure galaxy masses and NFW halo concentrations. We also show how flexion
measurements can be used to reconstruct mass maps in 2-D projection on the sky,
and in 3-D in combination with redshift data. Finally, we examine the
predictions for cosmic flexion, including convergence-flexion
cross-correlations, and find that the signal is an effective probe of structure
on non-linear scales.Comment: 17 pages, including 12 figures, submitted to MNRA
Relativistic three-body recombination with the QED vacuum
Electron-positron pair annihilation into a single photon is studied when a
second free electron is present. Focussing on the relativistic regime, we show
that the photon emitted in the three-lepton interaction may exhibit distinct
angular distributions and polarization properties. Moreover, the process can
dominate over two-photon annihilation in relativistic electron-positron plasmas
of few-MeV temperature. An analogy with three-body recombination of electrons
with ions is drawn.Comment: 5 pages, 4 figure
Statistics of Oscillator Strengths in Chaotic Systems
The statistical description of oscillator strengths for systems like hydrogen
in a magnetic field is developed by using the supermatrix nonlinear
-model. The correlator of oscillator strengths is found to have a
universal parametric and frequency dependence, and its analytical expression is
given. This universal expression applies to quantum chaotic systems with the
same generality as Wigner-Dyson statistics.Comment: 11 pages, REVTeX3+epsf, two EPS figures. Replaced by the published
version. Minor changes
Interaction Energy of `t Hooft-Polyakov Monopoles
The dependence of the energies of axially symmetric monopoles of magnetic
charges 2 and 3, on the Higgs self-interaction coupling constant, is studied
numerically. Comparing the energy per unit topological charge of the charge-2
monopole with the energy of the spherically symmetric charge-1 monopole, we
confirm that there is only a repulsive phase in the interaction energy between
like monopolesComment: 6 pages, including 1 postscript figure, LaTex2e forma
The ILR School at Fifty: Voices of the Faculty, Alumni & Friends (Full Text)
A collection of reflections on the first fifty years of the School of Industrial and Labor Relations at Cornell University. Compiled by Robert B. McKersie, J. Gormly Miller, Robert L. Aronson, and Robert R. Julian. Edited by Elaine Gruenfeld Goldberg. It was the hope of the compilers that the reflections contained in this book would both kindle memories of the school and stimulate interest on the part of future generations of ILRies who have not yet shared in its special history.
Dedicated to the Memory of J. Gormly Miller, 1914-1995.
Copyright 1996 by Cornell University. All rights reserved
- …