177 research outputs found

    Transport properties of clean and disordered Josephson junction arrays

    Full text link
    We investigate the influence of quantum fluctuations and weak disorder on the vortex dynamics in a two-dimensional superconducting Berezinskii-Kosterlitz-Thouless system. The temperature below which quantum fluctuations dominate the vortex creep is determined, and the transport in this quantum regime is described. The crossover from quantum to classical regime is discussed and the quantum correction to the classical current-voltage relation is determined. It is found that weak disorder can effectively reduce the critical current as compared to that in the clean system.Comment: 4 pages, 2 figure

    Theory of nuclear excitation by electron capture for heavy ions

    Full text link
    We investigate the resonant process of nuclear excitation by electron capture, in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. In order to derive the cross section a Feshbach projection operator formalism is introduced. Nuclear states and transitions are described by a nuclear collective model and making use of experimental data. Transition rates and total cross sections for NEEC followed by the radiative decay of the excited nucleus are calculated for various heavy ion collision systems

    The Order of Phase Transitions in Barrier Crossing

    Full text link
    A spatially extended classical system with metastable states subject to weak spatiotemporal noise can exhibit a transition in its activation behavior when one or more external parameters are varied. Depending on the potential, the transition can be first or second-order, but there exists no systematic theory of the relation between the order of the transition and the shape of the potential barrier. In this paper, we address that question in detail for a general class of systems whose order parameter is describable by a classical field that can vary both in space and time, and whose zero-noise dynamics are governed by a smooth polynomial potential. We show that a quartic potential barrier can only have second-order transitions, confirming an earlier conjecture [1]. We then derive, through a combination of analytical and numerical arguments, both necessary conditions and sufficient conditions to have a first-order vs. a second-order transition in noise-induced activation behavior, for a large class of systems with smooth polynomial potentials of arbitrary order. We find in particular that the order of the transition is especially sensitive to the potential behavior near the top of the barrier.Comment: 8 pages, 6 figures with extended introduction and discussion; version accepted for publication by Phys. Rev.

    Photon angular distribution and nuclear-state alignment in nuclear excitation by electron capture

    Get PDF
    The alignment of nuclear states resonantly formed in nuclear excitation by electron capture (NEEC) is studied by means of a density matrix technique. The vibrational excitations of the nucleus are described by a collective model and the electrons are treated in a relativistic framework. Formulas for the angular distribution of photons emitted in the nuclear relaxation are derived. We present numerical results for alignment parameters and photon angular distributions for a number of heavy elements in the case of E2 nuclear transitions. Our results are intended to help future experimental attempts to discern NEEC from radiative recombination, which is the dominant competing process

    Nuclear effects in atomic transitions

    Full text link
    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects that can be identified in atomic structure data. An introduction to the theory of isotope shifts and hyperfine splitting of atomic spectra is given, together with an overview of the typical experimental techniques used in high-precision atomic spectroscopy. More exotic effects at the borderline between atomic and nuclear physics, such as parity violation in atomic transitions due to the weak interaction, or nuclear polarization and nuclear excitation by electron capture, are also addressed.Comment: review article, 53 pages, 14 figure

    Dissociation in a polymerization model of homochirality

    Full text link
    A fully self-contained model of homochirality is presented that contains the effects of both polymerization and dissociation. The dissociation fragments are assumed to replenish the substrate from which new monomers can grow and undergo new polymerization. The mean length of isotactic polymers is found to grow slowly with the normalized total number of corresponding building blocks. Alternatively, if one assumes that the dissociation fragments themselves can polymerize further, then this corresponds to a strong source of short polymers, and an unrealistically short average length of only 3. By contrast, without dissociation, isotactic polymers becomes infinitely long.Comment: 16 pages, 6 figures, submitted to Orig. Life Evol. Biosp

    Is the tetraneutron a bound dineutron-dineutron molecule?

    Get PDF
    In light of a new experiment which claims a positive identification, we discuss the possible existence of the tetraneutron. We explore a novel model based on a dineutron-dineutron molecule. We show that this model is not able to explain the tetraneutron as a bound state, in agreement with other theoretical models already discussed in the literature.Comment: 9 pages, 3 figures, J. Phys. G, in pres

    Homochiral growth through enantiomeric cross-inhibition

    Full text link
    The stability and conservation properties of a recently proposed polymerization model are studied. The achiral (racemic) solution is linearly unstable once the relevant control parameter (here the fidelity of the catalyst) exceeds a critical value. The growth rate is calculated for different fidelity parameters and cross-inhibition rates. A chirality parameter is defined and shown to be conserved by the nonlinear terms of the model. Finally, a truncated version of the model is used to derive a set of two ordinary differential equations and it is argued that these equations are more realistic than those used in earlier models of that form.Comment: 20 pages, 6 figures, Orig. Life Evol. Biosph. (accepted

    First- and Second-Order Transitions between Quantum and Classical Regimes for the Escape Rate of a Spin System

    Full text link
    We have found a novel feature of the bistable large-spin model described by the Hamiltonian H = -DS_z^2 - H_xS_x.The crossover from thermal to quantum regime for the escape rate can be either first (H_x<SD/2) or second (SD/2<H_x<2SD) order, that is, sharp or smooth, depending on the strength of the transverse field. This prediction can be tested experimentally in molecular magnets like Mn_12Ac.Comment: 4 pages, 4 figure

    Stochastic Approach to Enantiomeric Excess Amplification and Chiral Symmetry Breaking

    Full text link
    Stochastic aspects of chemical reaction models related to the Soai reactions as well as to the homochirality in life are studied analytically and numerically by the use of the master equation and random walk model. For systems with a recycling process, a unique final probability distribution is obtained by means of detailed balance conditions. With a nonlinear autocatalysis the distribution has a double-peak structure, indicating the chiral symmetry breaking. This problem is further analyzed by examining eigenvalues and eigenfunctions of the master equation. In the case without recycling process, final probability distributions depend on the initial conditions. In the nonlinear autocatalytic case, time-evolution starting from a complete achiral state leads to a final distribution which differs from that deduced from the nonzero recycling result. This is due to the absence of the detailed balance, and a directed random walk model is shown to give the correct final profile. When the nonlinear autocatalysis is sufficiently strong and the initial state is achiral, the final probability distribution has a double-peak structure, related to the enantiomeric excess amplification. It is argued that with autocatalyses and a very small but nonzero spontaneous production, a single mother scenario could be a main mechanism to produce the homochirality.Comment: 25 pages, 6 figure
    corecore