587 research outputs found

    POTENTIAL WATER USE CONFLICTS GENERATED BY IRRIGATED AGRICULTURE IN RHODE ISLAND

    Get PDF
    This study constructs a simulation model to evaluate the potential for conflict among residential and agricultural users of water in southern Rhode Island. The model estimates the profitability of irrigation and turf farms and projects the total use and the economic value of irrigation water. The results indicate that the economic value of irrigation water compares favorably with current residential water prices in the area. In addition, substantial demand for irrigation water is projected. Given current rates of growth in turf acreage and residential water use, there appears to be a significant potential for conflict, particularly given the absence of well developed institutions for allocating water among users.Resource /Energy Economics and Policy,

    Engendering Behavior Change Through Single-Session Workshops: Lessons Learned from Extension\u27s Private Well Initiative

    Get PDF
    Based on a follow-up mail survey conducted in 2009, we found that structured, one-time workshops can influence and impact participant behavior change. Survey results suggest that brief workshops, staffed by key resource personnel, can have a powerful influence on participant behavior change and fill an important gap in rural drinking water protection. As a result of these educational workshops, we have learned that single-session workshops with supporting materials can encourage: (1) Testing of drinking water wells, (2) Contacting resource experts for more information and assistance, and (3) Sharing management information with other private well owners

    Assessing Thermally Stressful Events in a Rhode Island Coldwater Fish Habitat Using the SWAT Model

    Get PDF
    It has become increasingly important to recognize historical water quality trends so that the future impacts of climate change may be better understood. Climate studies have suggested that inland stream temperatures and average streamflow will increase over the next century in New England, thereby putting aquatic species sustained by coldwater habitats at risk. In this study we evaluated two different approaches for modeling historical streamflow and stream temperature in a Rhode Island, USA, watershed with the Soil and Water Assessment Tool (SWAT), using (i) original SWAT and (ii) SWAT plus a hydroclimatological model component that considers both hydrological inputs and air temperature. Based on daily calibration results with six years of measured streamflow and four years of stream temperature data, we examined occurrences of stressful conditions for brook trout (Salvelinus fontinalis) using the hydroclimatological model. SWAT with the hydroclimatological component improved modestly during calibration (NSE of 0.93, R2 of 0.95) compared to the original SWAT (NSE of 0.83, R2 of 0.93). Between 1980–2009, the number of stressful events, a moment in time where high or low flows occur simultaneously with stream temperatures exceeding 21 °C, increased by 55% and average streamflow increased by 60%. This study supports using the hydroclimatological SWAT component and provides an example method for assessing stressful conditions in southern New England’s coldwater habitats

    Using Planning and Evaluation Tools to Target Extension Outputs & Outcomes: The New England Private Well Symposium Example

    Get PDF
    Increasingly, the success of Extension programming is evaluated based on achieved outcomes. Here, we report on the use of the ADDIE model as a tool to plan, implement, and evaluate a specific activity within the New England Private Well Initiative\u27s regional efforts. Using this tool, we have successfully identified outcomes and objectives for the New England Private Well Water Symposium

    Simulating Climate Change Induced Thermal Stress in Coldwater Fish Habitat Using SWAT Model

    Get PDF
    Climate studies have suggested that inland stream temperatures and average streamflows will increase over the next century in New England, thereby putting aquatic species sustained by coldwater habitats at risk. This study uses the Soil and Water Assessment Tool (SWAT) to simulate historical streamflow and stream temperatures within three forested, baseflow-driven watersheds in Rhode Island, USA followed by simulations of future climate scenarios for comparison. Low greenhouse gas emission scenarios are based on the 2007 International Panel on Climate Change Special Report on Emissions Scenarios (SRES) B1 scenario and the high emissions are based on the SRES A1fi scenario. The output data are analyzed to identify daily occurrences where brook trout (Salvelinus fontinalis) are exposed to stressful events, defined herein as any day where Q25 or Q75 flows occur simultaneously with stream temperatures exceeding 21 °C. Results indicate that under both high- and low-emission greenhouse gas scenarios, coldwater fish species such as brook trout will be increasingly exposed to stressful events. The percent chance of stressful event occurrence increased by an average of 6.5% under low-emission scenarios and by 14.2% under high-emission scenarios relative to the historical simulations

    Using Planning and Evaluation Tools to Target Extension Outputs & Outcomes: The New England Private Well Symposium Example

    Get PDF
    Increasingly, the success of Extension programming is evaluated based on achieved outcomes. Here, we report on the use of the ADDIE model as a tool to plan, implement, and evaluate a specific activity within the New England Private Well Initiative\u27s regional efforts. Using this tool, we have successfully identified outcomes and objectives for the New England Private Well Water Symposium

    The effect of a protected area on the tradeoffs between short-run and long-run benefits from mangrove ecosystems

    Get PDF
    Protected areas are used to sustain biodiversity and ecosystem services. However, protected areas can create tradeoffs spatially and temporally among ecosystem services, which can affect the welfare of dependent local communities. This study examines the effect of a protected area on the tradeoff between two extractive ecosystem services from mangrove forests: cutting mangroves (fuelwood) and harvesting the shrimp and fish that thrive if mangroves are not cut. We demonstrate the effect in the context of Saadani National Park (SANAPA) in Tanzania, where enforcement of prohibition of mangrove harvesting was strengthened to preserve biodiversity. Remote sensing data of mangrove cover over time are integrated with georeferenced household survey data in an econometric framework to identify the causal effect of mangrove protection on income components directly linked to mangrove ecosystem services. Our findings suggest that many households experienced an immediate loss in the consumption of mangrove firewood, with the loss most prevalent in richer households. However, all wealth classes appear to benefit from long-term sustainability gains in shrimping and fishing that result from mangrove protection. On average, we find that a 10% increase in the mangrove cover within SANAPA boundaries in a 5-km2 radius of the subvillage increases shrimping income by approximately twofold. The creation of SANAPA shifted the future trajectory of the area from one in which mangroves were experiencing uncontrolled cutting to one in which mangrove conservation is providing gains in income for the local villages as a result of the preservation of nursery habitat and biodiversity

    Nutrient and Microbial Movement from Seasonally-Used Septic Systems

    Get PDF
    Unanswered seasonal vacation communities present unique problems for on-site sewage disposal. Seasonal occupancy may promote the transmission of contaminants to groundwater due to incomplete formation of a biological clogging mat in the soil absorption system. Groundwater surrounding three seasonally-used septic systems was monitored to determine the movement and attenuation of nitrogen, phosphorus and two bacterial indicators of human fecal contamination, fecal coliforms and Clostridium perfringens. Nitrate-N concentrations were often three to four-fold greater than the drinking water standard at wells 6 m from the soil absorption systems. Minimal phosphorus migration occurred from these systems. Although more than 1.5 m of unsaturated soil separated the bottom of the soil absorption system from the groundwater, elevated numbers of both bacterial indicators were observed in groundwater at both 2 m and 6 m away from the absorption systems. Biological clogging mats, which are considered to be critical for even distribution of wastewater within a drainfield, were not ground when the systems were excavated at the end of summer occupancy. Siting seasonally-used shoreline septic systems may require improved effluent distribution to achieve wastewater renovation

    Symptoms of Nitrogen Saturation in a Riparian Wetland

    Get PDF
    Riparian forests are in a unique position in the landscape since they form a transition between uplands and aquatic systems. These ecosystems may be highly susceptible to nitrogen (N) saturation since they may be subject to high inputs of N from upland areas. We measured potential net N mineralization and nitrification, soil inorganic N levels, microbial biomass carbon (C) and N content, and the N content of litter as indicators of N saturation in two riparian zones on the eastern and western sides of a stream. The sites had similar soils, vegetation, and hydrology, but differing upland land use. The eastern or enriched site was downgradient of a dense residential housing development (built in the 1950s) that produced high groundwater nitrate (NO3—) concentrations. The western or control site had an undeveloped upland. Our objectives were (1) to evaluate if groundwater NO3— loading had induced changes in surface soil N—cycle processes that are symptoms of N saturation in the enriched site and (2) to evaluate these changes in relation to inputs and outputs of N to the site. Soil inorganic—N levels, litter N content, and potential net N mineralization and nitrification were significantly higher on the enriched site relative to the control site, suggesting that the enriched site and N saturated. However, input—output analysis indicated that the enriched site was still a sink for upland derived NO3—. High rates of denitrification and storage of N in soil organic matter appear to moderate N saturation on the enriched site
    • 

    corecore