532 research outputs found

    Chemically active substitutional nitrogen impurity in carbon nanotubes

    Full text link
    We investigate the nitrogen substitutional impurity in semiconducting zigzag and metallic armchair single-wall carbon nanotubes using ab initio density functional theory. At low concentrations (less than 1 atomic %), the defect state in a semiconducting tube becomes spatially localized and develops a flat energy level in the band gap. Such a localized state makes the impurity site chemically and electronically active. We find that if two neighboring tubes have their impurities facing one another, an intertube covalent bond forms. This finding opens an intriguing possibility for tunnel junctions, as well as the functionalization of suitably doped carbon nanotubes by selectively forming chemical bonds with ligands at the impurity site. If the intertube bond density is high enough, a highly packed bundle of interlinked single-wall nanotubes can form.Comment: 4 pages, 4 figures; major changes to the tex

    BN domains included into carbon nanotubes: role of interface

    Full text link
    We present a density functional theory study on the shape and arrangement of small BN domains embedded into single-walled carbon nanotubes. We show a strong tendency for the BN hexagons formation at the simultaneous inclusion of B and N atoms within the walls of carbon nanotubes. The work emphasizes the importance of a correct description of the BN-C frontier. We suggest that BN-C interface will be formed preferentially with the participation of N-C bonds. Thus, we propose a new way of stabilizing the small BN inclusions through the formation of nitrogen terminated borders. The comparison between the obtained results and the available experimental data on formation of BN plackets within the single walled carbon nanotubes is presented. The mirror situation of inclusion of carbon plackets within single walled BN nanotubes is considered within the proposed formalism. Finally, we show that the inclusion of small BN plackets inside the CNTs strongly affects the electronic character of the initial systems, opening a band gap. The nitrogen excess in the BN plackets introduces donor states in the band gap and it might thus result in a promising way for n-doping single walled carbon nanotubes

    Mechanically activated catalyst mixing for high-yield boron nitride nanotube growth

    Get PDF
    Boron nitride nanotubes (BNNTs) have many fascinating properties and a wide range of applications. An improved ball milling method has been developed for high-yield BNNT synthesis, in which metal nitrate, such as Fe(NO(3))(3), and amorphous boron powder are milled together to prepare a more effective precursor. The heating of the precursor in nitrogen-containing gas produces a high density of BNNTs with controlled structures. The chemical bonding and structure of the synthesized BNNTs are precisely probed by near-edge X-ray absorption fine structure spectroscopy. The higher efficiency of the precursor containing milling-activated catalyst is revealed by thermogravimetric analyses. Detailed X-ray diffraction and X-ray photoelectron spectroscopy investigations disclose that during ball milling the Fe(NO(3))(3) decomposes to Fe which greatly accelerates the nitriding reaction and therefore increases the yield of BNNTs. This improved synthesis method brings the large-scale production and application of BNNTs one step closer

    Magnetic Boron Nitride Nanoribbons with Tunable Electronic Properties

    Full text link
    We present theoretical evidence, based on total-energy first-principles calculations, of the existence of spin-polarized states well localized at and extended along the edges of bare zigzag boron nitride nanoribbons. Our calculations predict that all the magnetic configurations studied in this work are thermally accessible at room temperature and present an energy gap. In particular, we show that the high spin state, with a magnetic moment of 1 μB\mu_B at each edge atom, presents a rich spectrum of electronic behaviors as it can be controlled by applying an external electric field in order to obtain metallic ↔\leftrightarrow semiconducting ↔\leftrightarrow half-metallic transitions.Comment: 12 pages, 5 figures, 2 table

    Colonization, disability, and the intranet: the ethnic cleansing of space?

    Get PDF
    The article analyzes teacher’s emplacement of the image of disability within school’s intranet sites in England. The image unearthed within such sites was problematic as it did not display a positive or realistic image of disability or disabled people. Within the article historical archaeology and colonialism are employed as theoretic framework to interpret this artifact of disability. The article also provides an ethnographic subscript to the creation of a space of possibilities and how this became striated by missionary teachers who colonized this brave new intranet world. Deciphering of the organization and representation of the disabled indigene, through this theoretical framework, unearthed a cartography inscribed by the scalpel of old world geometry

    Single step process for the synthesis of carbon nanotubes and metal/alloy-filled multiwalled carbon nanotubes

    Get PDF
    A single-step approach for the synthesis of multi-walled nanotubes (MWNT) filled with nanowires of Ni/ternary Zr based hydrogen storage alloy has been illustrated. We also demonstrate the generation of CO-free hydrogen by methane decomposition over alloy hydride catalyst. The present work also highlights the formation of single-walled nanotubes (SWNT) and MWNTs at varying process conditions. These carbon nanostructures have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), Energy dispersive X-ray analysis (EDX) and Raman spectroscopy. This new approach overcomes the existing multi-step process limitation, with possible impact on the development of future fuel cell, nano-battery and hydrogen sensor technologies
    • …
    corecore