4 research outputs found
Pharmacological Treatment of Degenerative Cervical Myelopathy: A Critical Review of Current Evidence
Degenerative cervical myelopathy (DCM) is the leading cause of spinal cord dysfunction in adults, representing substantial morbidity and significant financial and resource burdens. Typically, patients with progressive DCM will eventually receive surgical treatment. Nonetheless, despite advancements in pharmacotherapeutics, evidence for pharmacological therapy remains limited. Health professionals from various fields would find interest in pharmacological agents that could benefit patients with mild DCM or enhance surgical outcomes. This review aims to consolidate all clinical and experimental evidence on the pharmacological treatment of DCM. We conducted a comprehensive narrative review that presents all pharmacological agents that have been investigated for DCM treatment in both humans and animal models. Riluzole exhibits effectiveness solely in rat models, but not in treating mild DCM in humans. Cerebrolysin emerges as a potential neuroprotective agent for myelopathy in animals but had contradictory results in clinical trials. Limaprost alfadex demonstrates motor function improvement in animal models and exhibits promising outcomes in a small clinical trial. Glucocorticoids not only fail to provide clinical benefits but may also lead to adverse events. Cilostazol, anti-Fas ligand antibody, and Jingshu Keli display promise in animal studies, while erythropoietin, granulocyte colony-stimulating factor and limaprost alfadex exhibit potential in both animal and human research. Existing evidence mainly rests on weak clinical data and animal experimentation. Current pharmacological efforts target ion channels, stem cell differentiation, inflammatory, vascular, and apoptotic pathways. The inherent nature and pathogenesis of DCM offer substantial prospects for developing neurodegenerative or neuroprotective therapies capable of altering disease progression, potentially delaying surgical intervention, and optimizing outcomes for those undergoing surgical decompression
Empathic Fear Responses in Mice Are Triggered by Recognition of a Shared Experience
Empathy is an important psychological capacity that involves the ability to recognize and share emotions with others. In humans, empathy for others is facilitated by having had a similar prior experience. It increases with the intensity of distress that observers believe is occurring to others, and is associated with acute emotional responses to witnessing others’ distress. We sought to develop a relatively simple and fast mouse model of human empathy that resembled these characteristics. We modeled empathy by measuring the freezing of observer mice to observing the footshock of a subject mouse. Observer mice froze to subject footshocks only when they had a similar shock experience 24 hours earlier. Moreover, this freezing increased with the number of footshocks given to the subject and it was accentuated within seconds after footshock delivery. Freezing was not seen in naïve observers or in experienced observers that observed a subject who was spared footshock. Observers did not freeze to a subject’s footshock when they had experienced a swim stress 24 hours prior, demonstrating a specific effect for shared experience, as opposed to a generalized stressor in eliciting observer mouse freezing. We propose that this two-day experimental protocol resembles many aspects of human empathy in a mouse model that is amenable to transgenic analysis of neural substrates for empathy and its impairment in certain clinical disorders