5 research outputs found

    Food recommendations for abnormal uterine bleeding in Traditional Iranian medicine on the basis of Hemorheology

    Get PDF
    Abnormal uterine bleeding is one of the most common problems in pre-menopausal women. Traditional Iranian Medicine has given numerous reasons for this problem. Some of these problems are focused upon the rheological changes that show up in the blood. Food recommendations are one of the first therapeutic measures in Traditional Iranian Medicine and determination of the type of patient's diet is an integral part of the therapeutic protocols of this medicine. This article intends to review the books of Traditional Iranian Medicine in addition to the nutritional recommendations of this science in abnormal uterine bleeding and explain their effect on changes in blood rheology. For this purpose, the texts of Iranian Medicine related to different ages were searched and dietary recommendations in abnormal uterine bleeding were extracted. From this point of view, some changes in the quality or quantity of blood, according to the science of fluid mechanics, increases fluidity of blood. The recommended diets in Traditional Iranian Medicine to correct these changes will help control and cure this problem. &nbsp

    Three-dimensional evaluation of bracket placement accuracy and excess bonding adhesive depending on indirect bonding technique and bracket geometry: an in-vitro study

    No full text
    Background!#!This study aimed at comparing bracket placement and excess bonding adhesive depending on different indirect bonding (IDB) techniques and bracket geometries.!##!Methods!#!Four hundred eighty brackets without hook (WOH) and 360 with hook (WH) were placed on 60 plaster models. Three IDB techniques were tested: polyvinyl-siloxane vacuum-form (PVS-VF), polyvinyl-siloxane putty (PVS-putty), and translucence double-polyvinyl-siloxane (double-PVS). PVS-VF and PVS-putty were combined with chemically, and double-PVS was combined with light cured bonding adhesive. Virtual images of models before and after bracket transfer were generated, and computerized images were compared. Linear, angular deviations, and excess bonding adhesive were measured.!##!Results!#!Linear differences between the three groups were obtained for PVS-VF (WH: 1.08, SD 0.50 mm; WOH: 0.86, SD 0.25 mm), PVS-putty (WH: 0.73, SD 0.51 mm; WOH: 0.58, SD 0.28 mm), and double-PVS (WH: 0.65, SD 0.45 mm; WOH: 0.59, SD 0.33 mm) (P < 0.001). Hooks affected bracket placement accuracy in PVS-VF (P < 0.001) and PVS-putty (P = 0.029). Angular differences were observed for brackets WOH between the PVS-VF (0.64, SD 0.48°) and double-PVS group (0.92, SD 0.76°) (P < 0.001) and within double-PVS group (WH: 0.66, SD 0.51° vs. WOH: 0.92, SD 0.76°, P < 0.001). Highest amount of excess adhesive was obtained for PVS-putty group (WH: 6.54, SD 5.31 mm !##!Conclusions!#!The double-PVS group revealed promising results with respect to transfer accuracy, whereas the PVS-VF group provided least excess bonding adhesive. Basically, hooks lead to lower precision and higher excess bonding adhesive. PVS trays for IDB generate high bracket placement accuracy. PVS-putty is the easiest to handle with and also the cheapest, but leads to large excess bonding adhesive, especially in combination with hooked brackets or tubes

    Suitability of virtual plaster models superimposed with the lateral cephalogram for guided paramedian orthodontic mini-implant placement with regard to the bone support

    No full text
    Purpose!#!The purpose of this study was twofold: first, to evaluate the precision of guided orthodontic mini-implant (OMI) placement planned on virtual superimposition of plaster models and lateral cephalograms with regard to the bone support and, second, to investigate the effects of silicone guide extension.!##!Methods!#!A total of 40 OMIs were placed in the paramedian area of the anterior palates of 20 cadaver heads. Digitalized models and the corresponding lateral cephalograms were superimposed for planning the OMI positions, and tooth-supported (TS) and soft-tissue-supported (STS) templates were manufactured. Thereafter, postoperative cone beam computed tomography (CBCT) was performed, and the straight (A) and right-angle distance (B) from the implant tip to the nasal floor, the distance from the implant shoulder to the hard palate (C) and the angle (α) between the implant and palate plane with the preoperative (T0) and postoperative (T1) positions were measured.!##!Results!#!The postoperative distances A, B, and C were less than the planned implant positions. However, significant difference between T0 and T1 was only noted in terms of distance A using the TS templates (T0: 4.7 ± 2.3 mm, T1: 3.0 ± 2.3 mm; p = 0.008) and distance B using the STS template (T0: 3.1 ± 3.5 mm, T1: 2.3 ± 3.2 mm; p = 0.041). There were no significant differences in all average deviations (∆ Ceph/CBCT) between the two templates.!##!Conclusions!#!Guided OMI placement planned by virtual superimposition of digitized models and the corresponding lateral cephalogram is fundamentally feasible. However, the position closer to the nasal floor needs critical assessment for correct implantation. The silicone template expansion seems to have only a minor effect on transfer accuracy

    Accuracy of fully guided orthodontic mini-implant placement evaluated by cone-beam computed tomography: a study involving human cadaver heads

    No full text
    Objectives!#!The aim of this study was to evaluate the accuracy of fully guided orthodontic mini-implant (OMI) placements supported by tooth- (TBGs) or gingiva-borne silicone guides (GBGs) based on virtually superimposed lateral cephalograms on virtual plaster models.!##!Materials and methods!#!Lateral cephalograms and corresponding plaster models were virtually superimposed for the planning of OMI positions; fully guided TBGs and GBGs were fabricated (each, n = 10). A total of 40 OMIs were inserted in a paramedian position into the palate of 20 human cadavers. Postoperative cone-beam computer tomographies (CBCTs) were carried out, and an accuracy evaluation was performed by comparing preoperative planning models and postoperative CBCTs. Deviations of the axis, tip, centre of the shoulder and vertical position of each of the implants were evaluated. Furthermore, the transfer accuracy measured by postoperative CBCT scans were compared with the accuracy determined using an intraoral scanner.!##!Results!#!A significant deviation between TBGs (2.81° SD 2.69) and GBGs (6.22° SD 4.26) regarding implant angulation was evaluated (p = 0.005). Implant tip and implant shoulder deviations revealed no statistical differences between the guides. Accuracy values of oral scans regarding vertical deviations were significantly more inaccurate when compared with CBCTs (p < 0.001).!##!Conclusions!#!The accuracy of an OMI position can be significantly increased by using a guide extension over the teeth. Vertical implant positions presented the lowest deviations. Postoperative oral scans and CBCTs represent diverging accuracy measurements when compared with virtual planning.!##!Clinical relevance!#!Users must keep in mind that despite virtual planning deviations, inaccuracies of a few millimetres may occur
    corecore