9 research outputs found

    Micro-eukaryotic diversity in hypolithons from Miers Valley, Antarctica

    Get PDF
    The discovery of extensive and complex hypolithic communities in both cold and hot deserts has raised many questions regarding their ecology, biodiversity and relevance in terms of regional productivity. However, most hypolithic research has focused on the bacterial elements of the community. This study represents the first investigation of micro-eukaryotic communities in all three hypolith types. Here we show that Antarctic hypoliths support extensive populations of novel uncharacterized bryophyta, fungi and protists and suggest that well known producer-decomposer-predator interactions may create the necessary conditions for hypolithic productivity in Antarctic deserts

    Mango endophyte and epiphyte microbiome composition during fruit development and post-harvest stages

    Get PDF
    The influence of the development stage and post-harvest handling on the microbial composition of mango fruit plays a central role in fruit health. Hence, the composition of fungal and bacterial microbiota on the anthoplane, fructoplane, stems and stem-end pulp of mango during fruit development and post-harvest handling were determined using next-generation sequencing of the internal transcribed spacer and 16S rRNA regions. At full bloom, the inflorescence had the richest fungal and bacterial communities. The young developing fruit exhibited lower fungal richness and diversities in comparison to the intermediate and fully developed fruit stages on the fructoplane. At the post-harvest stage, lower fungal and bacterial diversities were observed following prochloraz treatment both on the fructoplane and stem-end pulp. Ascomycota (52.8%) and Basidiomycota (43.2%) were the most dominant fungal phyla, while Penicillium, Botryosphaeria, Alternaria and Mucor were detected as the known post-harvest decay-causing fungal genera. The Cyanobacteria (35.6%), Firmicutes (26.1%) and Proteobacteria (23.1%) were the most dominant bacterial phyla. Changes in the presence of Bacillus subtilis following post-harvest interventions such as prochloraz suggested a non-target effect of the fungicide. The present study, therefore, provides the primary baseline data on mango fungal and bacterial diversity and composition, which can be foundational in the development of effective disease (stem-end rot) management strategies.Supplementary Materials: Figure S1: Taxonomic abundance of pathogenic fungal species at the preharvest (A) and postharvest stages (B) on the fructoplane, stem-end pulp and fruit stems of cv. Tommy Atkins mangoes. FP, fructoplane; SEP, stem-end pulp; S, fruit stem.https://www.mdpi.com/journal/horticulturaeam2022Plant Production and Soil Scienc

    Bacterial community dynamics and functional profiling of soils from conventional and organic cropping systems

    Get PDF
    Soil microbiomes play an integral role in agricultural production systems. Understanding of the complex microbial community structure and responses to conventional compared to organic cropping systems is crucial for sustainable production and ecosystems health. This study investigated soil microbial community structure responses based on a four year long field experiment. Bacterial communities characterizing conventional and organic cropping systems were evaluated using Illumina MiSeq high-throughput sequencing targeting the V4-V5 variable region of the 16S rRNA gene. Soil bacterial community structure showed a cropping system dependant distribution, with nitrogen cycling taxa (Bacillus, Niastella, Kribbella, and Beijerinckia) dominant in conventional cropping systems, while carbon cycling taxa (Dokdonella, Caulobacter, Mathylibium, Pedobacter, Cellulomonas and Chthoniobacter and Sorangium) were abundant in organic cropping systems. Functional prediction of the bacterial biomes showed conventional cropping systems to harbour a community adapted to carbon-limited environments, with organic cropping systems dominated by those involved in the degradation of complex organic compounds. These findings suggest the existence of niche specific communities and functional specialization between cropping systems with potential use in soil management through selective promotion of organisms beneficial to soil health.This work forms part of the research of the Centre of Excellence (“CoE”) in Food Security sponsored by the Department of Science and Innovation, Republic of South Africa (“DSI”) and administered by the National Research Foundation (“NRF”).http://www.elsevier.com/locate/apsoilhj2022Plant Production and Soil Scienc

    Profiling bacterial communities of irrigation water and leafy green vegetables produced by small-scale farms and sold in informal settlements in South Africa

    Get PDF
    AVAILABILITY OF DATA AND MATERIALS : Sequence data are available at NCBI-SRA under submission numbers SUB12270895 and SUB12272756 for BioProject number PRJNA900001.ADDITIONAL FILE 1: TABLE S1. Samples analysed for bacterial community characterisation. TABLE S2. Taxonomic breakdown of core bacterial taxa present in flooding irrigation water. TABLE S3. Bacterial families that are associated with isolation and outbreaks in South Africa.Morogo is an African indigenous term used for leafy green vegetables harvested in the wild or cultivated in small-scale farms and consumed by the local populations of the region. Small-scale farmers have gained recognition as important suppliers of morogo to informal settlements. In commercial production systems, leafy green vegetables have increasingly been reported as associated with foodborne pathogens and disease outbreaks. Little is known of the presence of these organisms on leafy green vegetables in the informal unregulated food systems. This study aimed to profile bacterial communities in irrigation water (flooding and overhead irrigation water) and leafy green vegetables (Brassica rapa L. chinensis and Brassica rapa varieties of morogo) to establish the natural bacterial flora at the water-fresh produce interface from five small-scale farms in two provinces in South Africa. Illumina MiSeq high-throughput sequencing showed that each farm exhibited a unique bacterial community composition, with an overall high relative abundance of Proteobacteria, Firmicutes and Actinobacteria, including prominent families such as Burkholderiaceae (48%), Enterobacteriaceae (34%), Bacillales Family XII (8%), Rhodobacteraceae (3%), Micrococcaceae (1.98%) and Pseudomonadaceae (1.79%). Specific Enterobacteriaceae Serratia, Enterobacter, Salmonella, Shigella, Escherichia coli, Buchnera, Citrobacter, Klebsiella and Proteus were identified, in addition to unique communities associated with plant or irrigation water source. These findings suggest that the edible plant microbiome can play an important role as transient contributor to the human gut and has the potential to affect overall health.The Water Research Commission (WRC) for the funded project “Measurement of water pollution determining the sources and changes of microbial contamination and impact on food safety from farming to retail level for fresh vegetables”, the Department of Science and Innovation (DSI)—National Research Foundation (NRF) Centre of Excellence in Food Security, the Partnerships for Enhanced Engagement in Research (PEER) USAID/DST funded project “Characterizing and tracking of antimicrobial resistance in the water-plant-food public health interface” and in part by the NRF of South Africa.https://cabiagbio.biomedcentral.comhj2023Plant Production and Soil Scienc

    Microbial Community Responses to Alterations in Historical Fire Regimes in Montane Grasslands

    Get PDF
    The influence of fire regimes on soil microbial diversity in montane grasslands is a relatively unexplored area of interest. Understanding the belowground diversity is a crucial stepping-stone toward unravelling community dynamics, nutrient sequestration, and overall ecosystem stability. In this study, metabarcoding was used to unravel the impact of fire disturbance regimes on bacterial and arbuscular mycorrhizal fungal community structures in South African montane grasslands that have been subjected to an intermediate (up to five years) term experimental fire-return interval gradient. Bacterial communities in this study exhibited a shift in composition in soils subjected to annual and biennial fires compared to the controls, with carbon and nitrogen identified as significant potential chemical drivers of bacterial communities. Shifts in relative abundances of dominant fungal operational taxonomic units were noted, with Glomeromycota as the dominant arbuscular mycorrhiza observed across the fire-return gradient. A reduction in mycorrhizal root colonisation was also observed in frequently burnt autumnal grassland plots in this study. Furthermore, evidence of significant mutualistic interactions between bacteria and fungi that may act as drivers of the observed community structure were detected. Through this pilot study, we can show that fire regime strongly impacts bacterial and fungal communities in southern African montane grasslands, and that changes to their usually resilient structure are mediated by seasonal burn patterns, chemical drivers, and mutualistic interactions between these two groups

    Illuminating the dynamic rare biosphere of the Greenland Ice Sheet's Dark Zone

    Get PDF
    Greenland's Dark Zone is the largest contiguous region of bare terrestrial ice in the Northern Hemisphere and microbial processes play an important role in driving its darkening and thereby amplifying melt and runoff from the ice sheet. However, the dynamics of these microbiota have not been fully identified. Here we present joint 16S rRNA gene and 16S rRNA (cDNA) comparison of input (snow), storage (cryoconite), and output (supraglacial stream water) habitats across the Dark Zone over the melt season. We reveal that all three Dark Zone communities have a preponderance of rare taxa exhibiting high protein synthesis potential (PSP). Furthermore, taxa with high PSP represent highly connected ‘bottlenecks’ within community structure, consistent with their roles as metabolic hubs. Finally, low abundance-high PSP taxa affiliated with Methylobacterium within snow and stream water suggest a novel role for Methylobacterium in the carbon cycle of Greenlandic snowpacks, and importantly, the export of potentially active methylotrophs to the bed of the Greenland Ice Sheet. By comparing the dynamics of bulk and potentially active microbiota in the Dark Zone of the Greenland Ice Sheet we provide novel insights into the mechanisms and impacts of the microbial colonization of this critical region of our melting planet

    Microbial abundance in surface ice on the Greenland Ice Sheet

    No full text
    Measuring microbial abundance in glacier ice and identifying its controls is essential for a better understanding and quantification of biogeochemical processes in glacial ecosystems. However, cell enumeration of glacier ice samples is challenging due to typically low cell numbers and the presence of interfering mineral particles. We quantified for the first time the abundance of microbial cells in surface ice from geographically distinct sites on the Greenland Ice Sheet, using three enumeration methods: epifluorescence microscopy (EFM), flow cytometry (FCM) and quantitative polymerase chain reaction (qPCR). In addition, we reviewed published data on microbial abundance in glacier ice and tested the three methods on artificial ice samples of realistic cell (10^2 – 10^7 cells ml-1) and mineral particle (0.1 – 100 mg/ml) concentrations, simulating a range of glacial ice types, from clean subsurface ice to surface ice to sediment-laden basal ice. We then used multivariate statistical analysis to identify factors responsible for the variation in microbial abundance on the ice sheet. EFM gave the most accurate and reproducible results of the tested methodologies, and was therefore selected as the most suitable technique for cell enumeration of ice containing dust. Cell numbers in surface ice samples, determined by EFM, ranged from ca 2 x 10^3 to ca 2 x 10^6 cells/ml while dust concentrations ranged from 0.01 to 2 mg/ml. The lowest abundances were found in ice sampled from the accumulation area of the ice sheet and in samples affected by fresh snow; these samples may be considered as a reference point of the cell abundance of precipitants that are deposited on the ice sheet surface. Dust content was the most significant variable to explain the variation in the abundance data, which suggests a direct association between deposited dust particles and cells and/or by their provision of limited nutrients to microbial communities on the Greenland Ice Sheet
    corecore