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HIGHLIGHTS 

 Organic and conventional cropping systems have similar α-diversity but different 
β-diversity. 

 Conventional cropping systems were dominated by nitrogen cycling genera while 
the organic was dominated by carbon cycling. 

 Organic cropping systems have higher antibiotic and antifungal producing 
genera. 

 Organic cropping systems had higher carbohydrate and amino acid metabolism. 
 

ABSTRACT 

Soil microbiomes play an integral role in agricultural production systems. Understanding 

of the complex microbial community structure and responses to conventional compared 

to organic cropping systems is crucial for sustainable production and ecosystems health. 

This study investigated soil microbial community structure responses based on a four 

year long field experiment. Bacterial communities characterizing conventional and 

organic cropping systems were evaluated using Illumina MiSeq high-throughput 

sequencing targeting the V4-V5 variable region of the 16S rRNA gene. Soil bacterial 

community structure showed a cropping system dependant distribution, with nitrogen 

1



 

cycling taxa (Bacillus, Niastella, Kribbella, and Beijerinckia) dominant in conventional 

cropping systems, while, carbon cycling taxa (Dokdonella, Caulobacter, Mathylibium, 

Pedobacter, Cellulomonas and Chthoniobacter and Sorangium) were abundant in 

organic cropping systems. Functional prediction of the bacterial biomes showed 

conventional cropping systems to harbour a community adapted to carbon-limited 

environments, with organic cropping systems dominated by those involved in the 

degradation of complex organic compounds. These findings suggest the existence of 

niche specific communities and functional specialization between cropping systems with 

potential use in soil management through selective promotion of organisms beneficial to 

soil health. 

 

Keywords: Bacterial communities; Functional potential; Niche specific community, Soil 

health 

 

1. Introduction 

Intensive agriculture is one of the main characterizing features of modern-day 

farming practices, to meet food demands from the ever-growing world population (Tilman 

et al., 2011). This, however, has resulted in adverse environmental impacts including 

increased soil erosion, nutrient leaching from intensive fertilizer application and declining 

soil microbial diversity (Tsvetkov et al., 2018; Han et al., 2016; Biswas et al., 2014). 

Bacteria and fungi as part of soil biota play key roles in nutrient cycling through organic 

matter decomposition and nutrient transformation and fixation (Rashid et al., 2016). 

Microbiomes are an integral part of almost all soil processes, with agricultural 
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management practices such as crop rotation directly impacting on plant/soil-associated 

microbial communities (van Bueren et al., 2002; Affaires et al., 2014). However, shifts in 

the resulting microbial communities due to variations in cropping systems are unclear, 

and may explain yield differences as well as provide new knowledge for future yield 

improvements. 

The effects of farming systems on soil microbial communities are very complex 

and poorly described yet, understanding them is essential for the effective and 

sustainable management of agricultural ecosystems (Buckley and Schmidt, 2001). A 

thorough understanding of the potential role and impact of microorganisms on agricultural 

ecosystem is integral to understanding how management systems can improve or 

deteriorate soil health and productivity over extended periods of time (Ishaq, 2017). Soil 

microbial communities are the engines driving nutrient transformation and release, as well 

as being directly and indirectly involved in ecosystem services (Rillig et al., 2006, Lynch 

et al., 1985) such as climate regulation (Saccá et al., 2017), pest and disease control 

(Garbeva et al., 2004), and biodegradation of organic waste and xenobiotics (Paul et al., 

2006). As such, a healthy, sustainable and productive soil is characterized by a diverse 

compliment of soil microbes and a balance of essential nutrient components in particular 

soil carbon and nitrogen (Mäder et al., 2002).  

Maintaining the biodiversity of soil microbes is widely acknowledged as crucial to 

soil health (Rao, 2007). In previous research, the soil microbial community profile of 

organic cropping systems specific to the use of organic manure have been reported  to 

shift microbial composition towards a more stable and fast-growing structure (Lupatini et 

al., 2017). This has further been suggested to have the potential to increase diversity as 
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well as promote specific taxa involved in maintaining plant health (Gonthier et al., 2014). 

Soils however, have direct impact on microbial community structure and function through 

natural perturbations or human activities (Upchurch et al., 2008; Weller et al., 2002; Tilak 

et al., 2005). While there are some agro-ecosystem studies that compare the effect of 

organic farming in its various forms to conventional systems on microbial community 

composition (Hartmann et al., 2015; Lori et al., 2017; Lupatini et al., 2017; Liao et al., 

2018; Amalytė et al., 2019), only a few have focused on assessing the effect of organic 

cropping systems (the use of organic manure and chemical-free disease control methods) 

on bacterial community composition. Moreover, to the best of our knowledge, no study 

has reported on the effect of the organic cropping system and the associated soil health 

treatments (monocrop or rotation) and on the functional potential in the soil to date. As 

such, the primary aim of this study was to obtain a snapshot of bacterial community 

structure characterising organic and conventional cropping systems. The study further 

attempts to predict functional potential of different cropping systems and soil health 

treatments to determine effective soil health markers related to nutrient cycling. In this 

context, we hypothesized that bacterial composition and functional potential of soil differs 

between organic and conventional cropping systems, with organic system surpassing that 

in conventional farming.  

 

2. Materials and Methods 

2.1. Site description and management 

The field site was located at the Nelson Mandela Metropolitan University, George 

campus at Saasveld, in the Western Cape Province of South Africa (22° 32’ 6.546” E; 33° 
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57’ 49.289” S). The area is approximately 160 m above sea level, with a characteristic 

Mediterranean climate. Monthly average temperatures range from 12 °C to 21 °C with an 

annual average rainfall of 827 mm. For over 20 years, the site area lay undisturbed, and 

was naturally habited by Kikuyu grass (Pennisetum clandestinum) as the dominant 

species, until it was cleared for the trial. In 2014, the site covering approximately 1500 m2 

of land was divided into three blocks, with each block consisting of nine 30 m2 (5m x 6m) 

plots. Plots were randomly allocated for either organic or conventional cropping system 

under monocrop or crop rotation as well as the untreated control. The following nine soil 

health treatments (crop rotation sequences are given in Table 1) belonging to three 

cropping systems that were tested in the current study: 1) Untreated control cabbage – 

CC; 2) Conventional soil health treatments: (i) Conventional monocrop cabbage- CMC, 

(ii) Conventional rotation cabbage- CRC, (iii) Conventional rotation cowpea- CRCP,  (iv) 

Conventional rotation sweet potato- CRSP and 3) Organic soil health treatments (i) 

Organic monocrop cabbage- OMC , (ii) Organic rotation cabbage- ORC, (iii) Organic 

rotation cowpea- ORCP, (iv) Organic rotation sweet potato- ORSP. Trials were conducted 

under rain fed conditions, between late October and March over a four-year period. The 

pH on all plots was amended to a suitable pH with Dolomitic lime which was applied at a 

rate of 1 ton ha-1 for three consecutive years (2014-2016) before each planting, except in 

2017.  
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Table 1. Treatment designation and crop sequence of the Saasveld Comparative Trial, Western Cape, 
South Africa. 

 

Manure was applied on all organic plots at a rate of 22.7 tons ha-1 before the first 

planting (2013/2014) but was there after only applied on organic monocrop cabbage and 

whenever cabbage was planted during organic rotation at a reduced rate of 5 tons ha-1 

Treatm

ent 

ID Main factor Sub-plot 

factor 

Year 

2014 2015 2016 2017 

Initial 

crop 

Crop 2 Crop 3 Crop 4 

1 OM

C 

Organic system Monocrop Cabbage Cabbage Cabbage Cabbage 

2 ORS

P 

Organic system Rotation Sweet 

potato 

Cowpea Cabbage Sweet 

potato 

3 ORC

P 

Organic system Rotation Cowpea Cabbage Sweet 

potato 

Cowpea 

4 ORC Organic system Rotation Cabbage Sweet 

potato 

Cowpea Cabbage 

5 CMC Conventional 

system 

Monocrop Cabbage Cabbage Cabbage Cabbage 

6 CRS

P 

Conventional 

system 

Rotation Sweet 

potato 

Cowpea Cabbage Sweet 

potato 

7 CRC

P 

Conventional 

system 

Rotation Cowpea Cabbage Sweet 

potato 

Cowpea 

8 CRC Conventional 

system 

Rotation Cabbage Sweet 

potato 

Cowpea Cabbage 

9 CC Control Monocrop Cabbage Cabbage Cabbage Cabbage 
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for the remaining three plantings. Manure was prepared by composting of green grass, 

crop leaf residues, and horse manure-straw mixture at a ratio of 1:1:1. Moreover, CalfosTM 

(calcium phosphonate) was applied at a rate of 900 kg ha-1 on all organic soil health 

treatments to increase soil phosphorus from 12 to 30 mg kg-1, before the beginning of 

2016/2017 season. 

 In the first season (2014/2015), all conventional soil health treatments received 

synthetic (NPK 2:3:2 (30) + 0.5% zinc) fertilizer (Gromor (PTY), LTD, South Africa) at a 

rate of 400 kg ha-1 and a top dressing of 200 kg ha-1 of LAN (27). For all seasons, synthetic 

fertilizer (Gromor) was applied at a rate of 200 kg ha-1 and a top dressing of 100 kg ha-1 

of LAN (27). The untreated control consisted of cabbage grown without fertilizer 

application for the entire duration of the experiment. 

 

2.2. Crop selection criterion 

Three crops representing different families commonly grown by commercial and 

subsistence farmers in South Africa were selected for the crop rotation system. These 

included cabbage (Brassica oleracea var. capitata), a heavy feeder, sweet potato 

(Ipomoea batatas), a light feeder and cowpea (Vigna unguiculata), which apart from fixing 

nitrogen, is not known to require fertilizer application. The crop planting sequence is 

shown in Table 1.  

 

2.3. Soil sampling, DNA isolation and 16S rRNA gene amplification 

Soil samples were collected once, at the end of the four-year experiment period in 

May 2018. A total of eight soil core (top-layer, 0-15 cm) subsamples from each replicate 
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plot in each of the three blocks was sampled with a clean auger (washed and disinfected 

with 70% ethanol between sampling). These eight replicate subsamples were then pooled 

to make a single heterogeneous composite sample, providing 27 independent samples. 

Soil samples were placed inside marked zip lock bags and transported to the laboratory 

in cooler boxes for storage at 4 °C and processed within two days to minimize the 

development of commensals. Total community DNA was extracted from 0.25 g of soil 

using the MoBio PowerSoilTM DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA, USA) 

according to the manufacturer’s instructions. The DNA in each sample was quantified 

using the Nanodrop ND-2000 UV-VIS Spectrophotometer (NanoDrop Technologies, 

Wilmington, DE, USA) prior to further analysis. 

 

2.4. Amplification, sequencing and sequence processing  

The bacterial microbiomes were pair-end sequenced using the Illumina MiSeq 

platform (Caporaso et al., 2012) using the primers 515F (5’-

GTGCCAGCMGCCGCGGTAA-3’) and 909R (5’-CCCCGYCAATTCMTTTRAGT-3’) 

(Wang and Qian, 2009), targeting the V4-V5 variable region in the 16S rRNA gene. 

Sequencing was performed at Molecular Research DNA (MR DNA, Shallowater, TX, 

USA) on a MiSeq Sequencer according to the manufacturer’s guidelines. Paired-end 

sequences were merged and preprocessed to remove barcodes and primers by MR DNA 

using their in-house pipeline and freeware. Raw sequence data are available on NCBI-

SRA under the BioProject accession number: PRJNA626528. 

The bioinformatics package Quantitative Insights Into Microbial Ecology 2 

(QIIME2) was used for the initial data processing (Bolyen et al., 2019). Demultiplexing of 
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sequences was performed with the q2-demux plugin (https://github.com/qiime2/q2-

demux). Reads were trimmed at 260bp before quality filtering and de-replication using 

the q2-dada2 plugin (Callahan et al., 2016). This process simultaneously removes 

chimeras and produce sequence variants (SVs), using nucleotide quality scores. 

Taxonomic classification of SVs was assigned using the q2-feature-classifier  which  uses 

Naive Bayes machine-learning classifiers to assign taxonomies based on sequence k-

mer frequencies (https://github.com/qiime2/q2-feature-classifier) and Greengenes 16S 

rRNA gene database (http://greengenes.lbl.gov) (Bokulich et al., 2017). The classification 

default assumption being that each species in the reference taxonomy is equally likely to 

be observed and has room to allow for prior probabilities to be set for each species 

(Bokulich et al., 2018). 

 

2.5. Statistical analysis 

The α- and β-diversity of bacterial communities was analyzed with MicrobiomeAnalyst, 

online pipeline (https://www.microbiomeanalyst.ca/)  (Dhariwal et al., 2017; Chong et al., 

2020). The α-diversity indices relative to the samples were represented by box plots and 

one-way analysis of variance (ANOVA) was used to compare the distribution of each 

bacterial community among the cropping systems and associated soil health treatments, 

and Tukey HSD mean comparisons were utilized to produce pairwise comparison of  the 

different cropping systems and soil health treatments. Data were imported using the 

pipeline using default parameters including low count filter (minimum count of four with 

20% prevalence in samples), low variance filter at 10% based on inter-quantile range and 

data scaling with total sum scaling. The effect of cropping systems and soil health 
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treatments on bacteria community structure was assessed using permutational 

multivariate analysis of variance (PERMANOVA) and principal coordinates analysis 

(Anderson, 2017). Homogeneity of multivariate dispersions was checked with the 

permutational multivariate dispersions (PERMDISP) test using the Bray-Curtis similarity 

matrix (Anderson, 2006). Phylogenetic Investigation of Communities by Reconstruction 

of Unobserved States (PICRUSt2; https://github.com/picrust/picrust2/) was used to 

predict potential functional gene abundances of the bacterial communities (Langille et al., 

2013) based on the OTU table generated from 16S rRNA gene region sequences and 

taxonomy in QIIME2. This is accomplished in a two-step process whereby; gene content 

is precomputed for each organism in a reference phylogenetic tree and reconstructing a 

table of predicted gene family abundances. The subsequent metagenome inference step 

then combines the resulting gene content predictions for all microbial taxa with the relative 

abundance of 16S rRNA genes (OTUs) in one or more microbial community samples, 

corrected for expected 16S rRNA gene copy number, to generate the expected 

abundances of gene families in the entire community (Langille et al., 2013). The prediction 

of Kyoto Encyclopedia of Genes and Genomes (KEGG) Ortholog abundances was 

carried out with Hidden-state prediction (Zaneveld and Thurber, 2014) and the KEGG 

Orthologs (KOs) were collapsed into functional pathways, modules, and categories. 

Differences in the relative abundance of taxonomic groups between cropping 

systems as well as between soil health treatments were performed in R version 3.4.3 (R 

Core Team, 2017) with the Kruskal-Wallis test across cropping systems and individual 

treatments followed by pairwise comparisons using the Wilcoxon rank sum test. Test 

results with p < 0.05 were considered statistically significant.  The linear discriminant 
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analysis (LDA) effect size (LEfSe) algorithm (Segata et al., 2011) was employed to 

identify biomarker genera and KOs from the top 100 matches. Samples were classified 

by conventional and organic cropping systems using an alpha value for the factorial 

Kruskal-Wallis test of 0.05, and a threshold on the logarithmic LDA score for 

discriminative features of 2.0. 

 

3. Results 

3.1. Bacterial community abundance, composition and variability 

A total of 1 818 951 (67 370 ± 21 451 per sample) 16SV4-V5 bacteria sequences 

were recovered from 27 soil samples after paired-end alignments, quality filtering, and 

deletion of chimeric sequences. These were subsequently assigned to a total of 6 425 (2 

107 ± 483 per sample) sequence variants for all the samples. Taxonomic compositions 

of bacteria from organic and conventional farming systems investigated in this study are 

shown in Fig 1. Overall, a total of 28 phyla, 90 classes, 132 orders, 133 families and 145 

bacterial genera were detected for all the samples. Proteobacteria was the dominant 

phylum (37.5%-41.4%), followed by Acidobacteria (15.3%-18.7%), Actinobacteria 

(13.2%-17.2%), Bacteroidetes (5-9%), Verrucomicrobia (4.2%-5.4%), 

Gemmatimonadetes (5.0%-5.1%), Chloroflexi (3.6%-3.9%), Planctomycetes (1.8%-

2.7%) and Firmicutes (0.6-1.0%) (Fig. 1A).  
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Fig. 1. Taxonomic abundance of major bacterial phyla in (A) different cropping systems and (B) individual 
soil health treatments. CC, untreated control cabbage; CMC, conventional monocrop cabbage; CRC, 
conventional rotation cabbage; CRCP, conventional rotation cowpea; CRSP, conventional rotation sweet 
potato; OMC, organic monocrop cabbage; ORC, organic rotation cabbage; ORCP, organic rotation 
cowpea; ORSP, organic rotation sweet potato. 
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No significant differences were observed between cropping systems at the phylum 

level with respect to the relative abundance of Proteobacteria (Kruskal-Wallis test: χ2 = 

3.55, P = 0.17), Acidobacteria (Kruskal-Wallis test: χ2 = 3.84, P = 0.15), Actinobacteria 

(Kruskal-Wallis test: χ2 = 0.39, P = 0.82), Bacteroidetes (Kruskal-Wallis test: χ2 = 2.33, P 

= 0.31), Verrucomicrobia (Kruskal-Wallis test: χ2 = 3.91, P = 0.14) and 

Gemmatimonadetes (Kruskal-Wallis test: χ2 = 0.11, P = 0.95) across all the treatments. 

The Kruskal-Wallis test revealed significant differences in the relative abundance of 

Planctomycetes (χ2 = 7.39, P = 0.02) and Firmicutes (χ2 = 17.10, P = 0.0002) between 

the two cropping systems. Further evaluation of Planctomycetes relative abundances 

showed higher proportions in conventional (2.6%) and organic (2.8%) cropping systems, 

than in the untreated control cabbage (1.8%).  

Among individual soil health treatments associated with the two cropping systems, 

significant differences were observed in the relative abundances of Proteobacteria (χ2 = 

17.63, P = 0.02), Actinobacteria (χ2 = 15.70, P = 0.04), Planctomycetes (χ2 = 10.89, P = 

0.021) and Firmicutes (χ2 = 20.90, P = 0.01) using the Kruskal-Wallis test. The highest 

relative abundance of Proteobacteria was observed in the organic rotation cowpea 

(ORCP) (41.4%), conventional monocrop cabbage (CMC) (41.2%), untreated control 

cabbage (CC) (40.6%) and organic monocrop cabbage (OMC) (39.2%) soil health 

treatments and the lowest were observed in the conventional rotation cowpea (CRCP) 

(36.8%) and conventional rotation cabbage (CRC) (35.1%) soil health treatments (Fig. 

1B). The relative abundance of Actinobacteria was observed to be significantly (χ2 = 

15.70, P = 0.04) higher (>16.9%) in the two conventional soil health treatments, CRCP 

and CRC as well as in ORCP and untreated control treatments. The organic rotation 
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sweet potato (ORSP) and OMC treatments had the highest relative abundance of 

Planctomycetes (2.9%) while the CMC and CC treatments demonstrated the lowest 

(2.4% and 1.8%, respectively). The Firmicutes phylum was generally present in very low 

relative abundance (<1.5%) in all soil health treatments. No significant differences were 

observed in the relative abundances of Acidobacteria (χ2 = 7.70, P = 0.46), Bacteroidetes 

(χ2 = 10.62, P = 0.22) and Verrucomicrobia (χ2 = 6.43, P = 0.59) across individual soil 

health treatments. 

LEfSe analysis was performed to identify microbes specifically enriched at the 

genus level in the different cropping systems. The organic and conventional cropping 

systems had each, nine differential taxa with an LDA score > 2.0, while the untreated 

control treatment had two (Fig. 2). At genus level, DA101 was the most differential taxon 

in the conventional cropping systems (LDA score > 4) followed by A17, Flavisolibacter 

(Bacteriodetes), Bacillus (Firmicutes), Niastella (Bacteriodetes), Kribbella 

(Actinobacteria), Alicyclobacillus (Firmicutes), Beijerinckia (Proteobacteria) and 

Kibdelosporangi. The genomic features in organic systems identified the genera 

Dokdonella (Proteobacteria), Caulobacter (Proteobacteria), Mathylibium 

(Proteobacteria), Pedobacter (Bacteriodetes), Ramlibacter (Proteobacteria), 

Cellulomonas (Actinobacteria), Chthoniobacter (Verrucomicrobia), Sorangium 

(Proteobacteria) and Planctomycete (Planctomycetes) as important taxonomic 

contributors. The preferential taxa in the untreated control treatment were the genera 

Themomonas (Proteobacteria) and Iamia (Actinobacteria). It is worth noting that no 

distinct taxonomic differences (LDA > 2.0) were observed between individual soil health 

treatments.  
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Fig. 2. Linear discriminate analysis (LDA) of effect size (LEfSe) to identify differential taxa at the genus 
level in each cropping system. Control, untreated control; Conventional, conventional cropping systems; 
Organic, organic cropping systems. 

 

3.2. Effect of cropping system on microbial diversity 

Evaluation of alpha diversity indices (Fig. 3A-B) among the three cropping systems 

showed significant differences  (P = 0.017334; [ANOVA] F = 4.8244), although pairwise 
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Fig. 3. Effect of cropping system on α-diversity based on Shannon index in cropping systems that used organic fertilizer (compost), conventional 
(inorganic fertilizer) and the control (no fertilizer) (A), and diversity of individual soil health treatments and associated crops in the respective 
cropping systems (B), after a four year period. The ends of the whiskers represent the minimum and maximum, the bottom and top of the box are 
the first and third quartiles, and the line inside the box is the median. The values for each diversity index are shown on the y-axis and cropping 
system or soil health treatment on x-axis. No significant differences were observed for the pairwise comparisons based on two-way ANOVA on α-
diversity and is depicted by a black diamond (♦). CC, untreated control cabbage; CMC, conventional monocrop cabbage; CRC, conventional 
rotation cabbage; CRCP, conventional rotation cowpea; CRSP, conventional rotation sweet potato; OMC, organic monocrop cabbage; ORC, 
organic rotation cabbage; ORCP, organic rotation cowpea; ORSP, organic rotation sweet potato. 

 

A B 
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comparisons between the cropping systems including organic and conventional (P =  

0.19868; [T-test] statistic = -1.3284),  untreated control and  organic (P = 0.17129; [T-test] 

statistic = -1.9302) and untreated control and conventional (P = 0.26918; [T-test] statistic 

= -1.4614) were all not significant. However, cropping systems were shown to be 

significant drivers of bacterial β-diversity with the control, conventional and organic 

cropping systems forming distinct clusters in PCoA (Fig. 4). The significant effect of 

cropping systems was further confirmed by a PERMANOVA test (F = 3.218; R2 = 0.211; 

P = 0.001), with samples having homogenous dispersions across systems (PERMDISP 

test: F = 0.177; P = 0.8389). PERMDISP test of pairwise comparison showed no 

significant difference in dispersions between organic and conventional 

(F = 0.0001; P = 0.992) cropping systems, and organic and untreated control 

(F = 0.426; P = 0.525) cropping systems. Evaluation of the impact of crop sequences with 

PERMANOVA test showed no significant impact on observed community structure in crop 

rotation for both conventional (F = 1.618; R2 = 0.378; P = 0.064)  and organic (F-value: 

1.5426; R2 = 0.339; P = 0.113) cropping systems. Similar observations were made for 

monocrop and crop rotation in the organic soil health treatments (F = 1.296; R2 = 0.11473; 

P = 0.198) except in the conventional soil health  treatments where significant differences 

(F = 1.901; R2  = 0.128; P = 0.04) were observed.  
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Fig. 4. Principle coordinates analysis (PCoA) of untreated control, conventional and organic soil cropping 
systems bacterial community compositions. Control, untreated control; Conventional, conventional 
cropping systems; Organic, organic cropping systems. CC, untreated control cabbage; CMC, 
conventional monocrop cabbage; CRC, conventional rotation cabbage; CRCP, conventional rotation 
cowpea; CRSP, conventional rotation sweet potato; OMC, organic monocrop cabbage; ORC, organic 
rotation cabbage; ORCP, organic rotation cowpea; ORSP, organic rotation sweet potato. 

 

3.3. Predicted metabolic functions using PICRUSt 

Bacterial community functions in conventional and organic cropping systems were 

predicted by PICRUSt. Functional predictions were generated from the KEGG database 

using the 16S metagenome data. In total, 7 674 KEGG orthologs (KOs) comprising 143 

KEGG pathways, 204 KEGG modules and 22 KEGG categories were identified in the 

study. The five most dominant of KEGG functional categories consisted of amino acid 

transport and metabolism (10.5%), inorganic ion metabolism (6.2%) carbohydrate 
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transport and metabolism (5.1%), nucleotide transport and metabolism (4.3%) and lipid 

transport and metabolism (3.6%) (Fig. 5). Out of the 7 674 KOs obtained, 3 350 (43.7%) 

were assigned to functional categories, while 4 324 (56.3%) either did not have known 

functional roles or had uncharacterized functions and were filtered from the analysis. A 

total of 27 KOs were differentially abundant in the different cropping systems (Table 2). 

Of these, five KOs were significantly higher in conventional cropping systems, with one, 

mannose-6-phosphate-isomerase (K01809), being involved in two KEGG pathways 

(fructose and mannose metabolism, amino sugar and nucleotide metabolism) (Table 2). 

In organic cropping systems, 18 KOs were differentially expressed with five KOs involved 

in seven KEEG pathways, K01051 (starch and sucrose metabolism) and K01198 (starch 

and sucrose metabolism, amino sugar and nucleotide sugar metabolism), K00648 (fatty 

acid metabolism), K01051 (pentose and glucuronate interconversions) and K01424 

(cyanoamino acid metabolism, alanine-aspartate-glutamate metabolism) (Table 2). The 

untreated control had four significantly higher KOs with two being involved in three 

pathways, K01052 (sulphur metabolism) and K04765 (pyrimide metabolism, purine 

metabolism). LEfSe was used to explore the differences in predicted functional 

characteristics of each microbiome at the level of modules, pathways and orthologs for 

conventional and organic cropping systems (Table 2). No KOs were differentially 

expressed in individual soil health treatments. There was no evidence of any predicted 

function (KEGG modules and pathways) being a significant biologically informative 

feature in the cropping system or soil health treatment. 
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Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs enriched among microbiomes in 
different cropping systems.* p-value lower than 0.05 means that KEGG orthologs are significantly 

different. 

 

Identifier KEGG ortholog description Effect size 
(LDA 
score) 

P-value Abundance 
Conventional Organic Untreated 

control 
K00648 3-oxoacyl-[acyl carrier protein] 

synthase 
2.41 0.000272 9825 10340 9903.8 

K13893 microcin C transport system 
substrate-binding protein 

2.39 0.00218 2139.3 1650.4 1801.1 

K03286 mpA-OmpF porin, OOP family 2.36 0.002086 2269.9 2723.3 2420.7 
K02078 acyl carrier protein 2.35 0.000423 10959 11405 11186 
K03929 para-nitrobenzyl esterase 2.35 0.002086 1795.6 2221.6 1780.6 
K15726 obalt-zinc-cadmium resistance 

protein 
2.29 0.001027 5963.2 6350.5 5994.6 

K06959 protein Tex 2.24 0.001392 3281.2 3501.4 3153.3 
K01809 mannose-6-phosphate isomerase 2.21 0.000923 3427.9 3185.9 3107.3 
K07107 acyl-CoA thioester hydrolase 2.21 0.001212 12643 12968 12788 
K07001 NTE family protein 2.20 0.003108 11688 11881 12007 
K13924 two-component system, chemotaxis 

family 
2.19 0.000376 1369.2 1643.9 1339.1 

K04765 nucleoside triphosphate 
diphosphatase 

2.19 0.001688 2924.9 2804.7 3112.9 

K01524 exopolyphosphatase 2.18 6.47E-05 8469.8 8742.6 8767.6 
K03772 FKBP-type peptidyl-prolyl cis-trans 

isomerase 
2.16 0.000685 2461.6 2746.9 2514.7 

K15725 outer membrane protein, cobalt-
zinc-cadmium efflux system 

2.15 0.001021 3460.2 3741.9 3480.2 

K07267 porin 2.12 0.000376 925.09 682.26 662.93 
K01082 3'(2'), 5'-bisphosphate nucleotidase 2.12 0.001162 2172.9 2281.7 2433.4 
K01424 L-asparaginase 2.11 0.001774 2916.5 3096.5 2839.7 
K06910 phosphatidylethanolamine-binding 

protein 
2.10 0.003108 2963.7 3214.2 3097.8 

K17763 rsbT co-antagonist protein 2.08 0.000353 818.81 1058.3 918.13 
K07120 uncharacterized protein 2.06 0.002965 1579.7 1354.5 1487.7 
K02346 DNA polymerase IV 2.03 0.001742 7515.5 7728.8 7530.6 
K08151 MFS transporter, DHA1 family, 

tetracycline resistance protein 
2.03 0.002842 1047.6 1238.9 1028.3 

K05367 penicillin-binding protein 1C 2.02 0.000531 1651.7 1858.1 1706.5 
K01198 xylan 1,4-beta-xylosidase 2.02 0.001074 454.72 660.66 510.21 
K01051 pectinesterase 2.02 0.003145 388.87 594.82 458.24 
K16089 outer membrane receptor for 

ferrienterochelin and colicins 
2.01 0.001475 1207.2 1407.8 1226.6 
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Fig. 5. The relative abundance of Kyoto Encyclopedia of Genes and Genomes (KEGG) functional 
categories identified via Phylogenetic Investigation of Communities by Reconstruction of Unobserved 
States (PICRUSt) predictions. 

 

4. Discussion 

Soil microbial diversity and abundance are important to the stability of soil 

ecosystems. To date, most microbial ecology studies of soil bacterial communities in 

organic cropping systems, specifically on the use of organic manure, have focused on 

diversity and composition (Hartmann et al., 2015; Lori et al., 2017; Lupatini et al., 2017; 

Liao et al., 2018; Amalytė et al., 2019), with little attention on the functional potential which 

remains largely unknown. The current study, a four-year long trial on the impact of 

different cropping systems and soil health treatments could not establish significant 

variation on alpha diversity similar to previous findings (Buckley and Schmidt, 2003). 
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Legacy effects of cropping systems or soil health treatment occurs in specific microbial 

groups and cannot be resolved by determining the diversity of the entire microbial 

community as shift in some groups might be compensated by shifts in others (Lupatini et 

al., 2017). Contrary to the observations on alpha diversity, microbial community 

composition (beta diversity) of the two cropping systems and their associated soil health 

treatments were distinct. The more dispersed communities observed in organic soil health 

treatments have been previously attributed to heterogenous habitat niches associated 

with the use of cattle farmyard manure-based compost and biological practices in organic 

cropping systems (Lupatini et al., 2017).  

The present study further explored the impact of cropping system and soil health 

treatments on bacterial community composition and functional potential under field 

conditions. Soil microbes have been reported to sensitively respond to changes in the soil 

environment (Liu et al., 2019), hence, exploring distinct microbial taxa under different 

cropping systems and soil health treatments may reveal the ecological importance of 

predominant taxa. The higher abundance of Proteobacteria in conventional and 

Planctomycetes in organic cropping systems is consistent with previous reports (Lupatini 

et al., 2017). Inorganic fertilizer application creates a copiotrophic environment, which 

increases plant growth and carbon availability, favouring the growth of the Proteobacteria, 

while the addition of manure promotes Planctomycetes (Lupatini et al., 2017). 

Copiotrophic groups such as Proteobacteria have a fast growth rate and are likely to 

increase in nutrient rich conditions following nitrogen and phosphorous fertilizer 

application (Wang et al., 2018) as observed in the present study. On the other hand, 

Planctomycetes is a kind of anaerobic ammonium oxidizing bacteria which participates in 
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the soil carbon (C) and nitrogen (N) cycle, hence the higher relative abundance in organic 

cropping systems (Chen et al., 2017). 

The presence of several differentially abundant taxa between cropping system 

provides ecological information on soil microbe responses to different agricultural 

management systems (Liao et al., 2019). The significant enrichment of genera DA101 

(Canditatus Udaebacter copiosus), A17 and Flavisolibacter in conventional cropping 

systems was contrary to our expectation. These genera are mostly found in soils receiving 

elevated amounts of labile carbon inputs (Lian et al., 2017; Brewer et al., 2016). The 

application of inorganic N fertilizer in conventional cropping systems has been reported 

to indirectly enhance soil organic C storage through increase in plant biomass, which may 

promote copiotrophic taxa common in soils with high labile carbon pools (Tian et al., 2015) 

and associated mineralization rates (Yao et al., 2017).  

Evaluation of the roles played by differentially expressed genera in organic 

cropping systems showed most to be associated with complex C metabolism including 

cellulose (Cellulomonas sp.) (Margulis and Chapman, 2009) and hemicellulose 

(Methylibium sp.) (Leung et al., 2016; Xia et al., 2019). While Caulobacter (Wilhelm, 

2018), Chthoniobacter (Kant et al., 2011) and Planctomycete (Chen et al., 2016), are 

associated with general organic matter decomposition. In compost manure treated soils, 

the genus Dokdonell has been reported as the most dominant taxa similar to our findings 

(Chen et al., 2017). The dominance of pathogen controlling genera including Sorangium, 

a prolific producer of secondary antifungal or antibacterial by-products (Pradella et al., 

2002), Pedobacter, a potential biocontrol agent (De Boer et al., 2007) may confer 

23



 

significant advantages in the suppression of soil-borne  bacterial and fungal pathogens in 

organic cropping systems (Song et al., 2017).  

In conventional cropping systems, Bacillus, one of the significantly abundant 

genera, is a well characterized group, known to produce a broad range of antibiotics and 

is reportedly linked to pathogen suppression (Bais et al., 2004; Radhakrishnan et al., 

2017). The dominance of Bacillus in conventional cropping systems together with other 

genera involved in N cycling including Niastella (N2-generating denitrifier), Kribbella 

(nitrate reduction), Beijerinckia (N fixation) appears to be greatly influenced by inorganic 

nitrogen fertilizer application (Hamamoto et al., 2018; Becking, 1961; Pitombo et al., 

2016). The abundance of Kribbella genus has previously been reported to decrease with 

inorganic nitrogen fertilizers applications contrary to findings in this study (Kihara, 2017). 

In agreement to our findings, increased relative abundance of Kribella in the rhizosphere 

soil after nitrogen application which is useful to the growth of the bacteria was previously 

reported by Shang and Yi (2015). 

Evaluation of expressed functional potential in conventional and organic cropping 

system including those associated with metabolic capabilities showed 27 differentially 

expressed KOs. No KOs were differentially expressed in soil health treatments belonging 

to the two cropping systems. Both conventional and organic cropping system had non 

niche specific capabilities (K01809- conventional and K01198- organic) to metabolize 

sugars, which are a primary soil metabolite, mostly availed from root exudates (Yurgel et 

al., 2019). Organic cropping systems were, moreover, characterized by high abundance 

of KOs involved in the starch and sucrose metabolism pathway which are important in 

global carbon cycling (Salam, 2018; Berlemont and Martiny, 2015) where it generates a 
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range of sugars as metabolites to fuel plant growth and synthesis of essential compounds 

such as cellulose (Ruan, 2014).  

In this study KOs involved in alanine-aspartate-glutamate metabolism were 

observed in higher abundance in organic cropping systems. The predominance of 

alanine-aspartate-glutamate metabolism pathway in soils that received organic manure 

was previously reported by Tank et al. (2017) in cilantro and eggplant cultivation. The 

alanine-aspartate-glutamate metabolism pathway has been shown to be less abundant 

in roots under N stress (Sheflin et al., 2019). This pathway is vital in the metabolism of 

glutamate and glutamine, which are the first organic nitrogen compounds derived from 

the assimilation of nitrate and ammonium in plants (Kan et al., 2017). Glutamate is a 

functional amino acid that plays important roles in plant nutrition, metabolism, and signal 

transduction (Kan et al., 2017) and occupies a central position in the amino acid 

metabolism. Thus, the KOs involved in alanine-aspartate-glutamate metabolism pathway, 

have the potential of being used as biomarkers for early warning of soil glutamate levels 

depletion. 

 In conclusion, this study showed that although bacterial communities in 

conventional cropping systems may be as diverse as those in organic systems, they have 

significantly different taxa abundances associated with carbon and nitrogen cycling. 

Bacterial genera involved in nitrogen cycling were higher in conventional cropping 

systems while the organic cropping systems were dominated by genera involved in 

carbon cycling. The increased abundance of predicted metabolic functions (KOs) involved 

in carbohydrate and amino acid metabolism in the organic cropping systems over 

conventional cropping systems, indicated niche-specific functions, providing a better 
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understanding of the overall crop soil microbiome metabolism and its functional 

specialization in the two production systems. Future studies, should therefore, focus on 

establishing whether the observed differences in the two cropping systems may be 

translated into extended capacity to adapt to climate change over a long period, both in 

small and commercial farming systems.    
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