175 research outputs found

    Angiotensin II Activates the Calcineurin/NFAT Signaling Pathway and Induces Cyclooxygenase-2 Expression in Rat Endometrial Stromal Cells

    Get PDF
    Cyclooxygenase (COX)-2, the inducible isoform of cyclooxygenase, plays a role in the process of uterine decidualization and blastocyst attachment. On the other hand, overexpression of COX-2 is involved in the proliferation of the endometrial tissue during endometriosis. Deregulation of the renin-angiotensin-system plays a role in the pathophysiology of endometriosis and pre-eclampsia. Angiotensin II increases intracellular Ca2+ concentration by targeting phospholypase C-gamma in endometrial stromal cells (ESC). A key element of the cellular response to Ca2+ signals is the activity of the Ca2+- and calmodulin-dependent phosphatase calcineurin. Our first aim was to study whether angiotensin II stimulated Cox-2 gene expression in rat ESC and to analyze whether calcineurin activity was involved. In cells isolated from non-pregnant uteri, COX-2 expression -both mRNA and protein- was induced by co-stimulation with phorbol ester and calcium ionophore (PIo), as well as by angiotensin II. Pretreatment with the calcineurin inhibitor cyclosporin A inhibited this induction. We further analyzed the role of the calcineurin/NFAT signaling pathway in the induction of Cox-2 gene expression in non-pregnant rat ESC. Cyclosporin A abolished NFATc1 dephosphorylation and translocation to the nucleus. Cyclosporin A also inhibited the transcriptional activity driven by the Cox-2 promoter. Exogenous expression of the peptide VIVIT -specific inhibitor of calcineurin/NFAT binding- blocked the activation of Cox-2 promoter and the up-regulation of COX-2 protein in these cells. Finally we analyzed Cox-2 gene expression in ESC of early-pregnant rats. COX-2 expression -both mRNA and protein- was induced by stimulation with PIo as well as by angiotensin II. This induction appears to be calcineurin independent, since it was not abrogated by cyclosporin A. In conclusion, angiotensin II induced Cox-2 gene expression by activating the calcineurin/NFAT signaling pathway in endometrial stromal cells of non-pregnant but not of early-pregnant rats. These results might be related to differential roles that COX-2 plays in the endometrium

    Validation of standardized data formats and tools for ground-level particle-based gamma-ray observatories

    Get PDF
    Ground-based gamma-ray astronomy is still a rather young field of research,with strong historical connections to particle physics. This is why mostobservations are conducted by experiments with proprietary data and analysissoftware, as it is usual in the particle physics field. However in recentyears, this paradigm has been slowly shifting towards the development and useof open-source data formats and tools, driven by upcoming observatories such asthe Cherenkov Telescope Array (CTA). In this context, a community-driven,shared data format (the gamma-astro-data-format or GADF) and analysis toolssuch as Gammapy and ctools have been developed. So far these efforts have beenled by the IACT community, leaving out other types of ground-based gamma-rayinstruments.We aim to show that the data from ground particle arrays, such asthe High-Altitude Water Cherenkov (HAWC) observatory, is also compatible withthe GADF and can thus be fully analysed using the related tools, in this caseGammapy. We reproduce several published HAWC results using Gammapy and dataproducts compliant with GADF standard. We also illustrate the capabilities ofthe shared format and tools by producing a joint fit of the Crab spectrumincluding data from six different gamma-ray experiments. We find excellentagreement with the reference results, a powerful check of both the publishedresults and the tools involved. The data from particle detector arrays such asthe HAWC observatory can be adapted to the GADF and thus analysed with Gammapy.A common data format and shared analysis tools allow multi-instrument jointanalysis and effective data sharing. Given the complementary nature of pointingand wide-field instruments, this synergy will be distinctly beneficial for thejoint scientific exploitation of future observatories such as the SouthernWide-field Gamma-ray Observatory and CTA.<br

    Horizontal muon track identification with neural networks in HAWC

    Get PDF
    Nowadays the implementation of artificial neural networks in high-energyphysics has obtained excellent results on improving signal detection. In thiswork we propose to use neural networks (NNs) for event discrimination in HAWC.This observatory is a water Cherenkov gamma-ray detector that in recent yearshas implemented algorithms to identify horizontal muon tracks. However, thesealgorithms are not very efficient. In this work we describe the implementationof three NNs: two based on image classification and one based on objectdetection. Using these algorithms we obtain an increase in the number ofidentified tracks. The results of this study could be used in the future toimprove the performance of the Earth-skimming technique for the indirectmeasurement of neutrinos with HAWC.<br

    The Southern Wide-field Gamma-ray Observatory reach for Primordial Black Hole evaporation

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) is a proposed ground-based gamma-ray detector that will be located in the Southern Hemisphere and is currently in its design phase. In this contribution, we will outline the prospects for Galactic science with this Observatory. Particular focus will be given to the detectability of extended sources, such as gamma-ray halos around pulsars; optimisation of the angular resolution to mitigate source confusion between known TeV sources; and studies of the energy resolution and sensitivity required to study the spectral features of PeVatrons at the highest energies. Such a facility will ideally complement contemporaneous observatories in studies of high energy astrophysical processes in our Galaxy

    Study of water Cherenkov detector designs for the SWGO experiment

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) is a next-generation ground-based gamma-ray detector under development to reach a full sky coverage together with the current HAWC and LHAASO experiments in the northern hemisphere. It will complement the observation of transient and variable multi-wavelength and multi-messenger phenomena, offering moreover the possibility to access the Galactic Centre. One of the possible SWGO configurations consists of an array of water Cherenkov tanks, with a high fill-factor inner array and a low-density outer array, covering an overall area of one order of magnitude larger than HAWC. To reach a high detection efficiency and discrimination capability between gamma-ray and hadronic air showers, various tank designs were studied. Double-layer tanks with several sizes, shapes and number of photomultiplier tubes have been considered. Single-particle simulations have been performed to study the tank response, using muons, electrons, and gamma-rays with energies typical of extensive air showers particles, entering the tanks with zenith angles from 0 to 60 degrees. The tank response was evaluated considering the particle detection efficiency, the number of photoelectrons produced by the photomultiplier tubes, and the time resolution of the measurement of the first photon. The study allowed to compare the performance of tanks with circular and square base, to understand which design optimizes the performance of the array. The method used in the study and the results will be discussed in this paper

    Technological options for the Southern Wide-field Gamma-ray Observatory (SWGO) and current design status

    Get PDF
    The SWGO Collaboration is in the process of designing and prototyping a wide field of view, high duty cycle complement to CTA and the existing ground-based particle detectors of the Northern Hemisphere (HAWC and LHAASO). In this contribution, we will compare the various technological options for designing the detector and present an overarching system design accommodating them. We will introduce a feasible reference configuration that is used for the first large-scale simulations and cost estimates, and show ongoing prototyping work focused on reaching a maintenance-free and cost-effective detector

    Benchmarking the Science for the Southern Wide-Field Gamma-ray Observatory (SWGO)

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) is the project to build a new extensive air shower particle detector for the observation of very-high-energy gamma-rays in South America. SWGO is currently planned for installation in the Southern Hemisphere, which grants it a unique science potential among ground-based gamma-ray detectors. It will complement the capabilities of CTA, working as a wide-field instrument for the monitoring of transient and variable phenomena, and will expand the sky coverage of Northern Hemisphere facilities like HAWC and LHAASO, thus granting access to the entire Galactic Plane and the Galactic Center. SWGO aims to achieve excellent sensitivity over a very large target energy range from about 100 GeV to the PeV, and improve on the performance of current sampling array instruments in all observational parameters, including energy and angular resolution, background rejection, and single-muon detection capabilities. The directives for the final observatory design will be given by a number of key science goals which are being defined over the course of the Project’s R&amp;D phase. In this contribution we will present the core science topics and target performance goals that serve as benchmarks to guide SWGO’s design configuration

    Lake Deployment of Southern Wide-field Gamma-ray Observatory (SWGO) Detector Units

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) will be a next-generation high altitude gamma-ray survey observatory in the southern hemisphere consisting of an array of water cherenkov detectors. With its energy range, wide field of view, large duty cycle and location it will complement the other existing and planned gamma-ray observatories. In this contribution we describe the lake concept for SWGO, an alternative to a HAWC-like design with individual water tanks and a LHAASO-style design with artificial ponds. In the lake concept, bladders filled with clean water are deployed near the surface of a natural lake, where each bladder is a light-tight stand-alone unit containing one or more photosensors. We will give an overview of the advantages and challenges for this design concept and describe the first results obtained from prototyping
    corecore