51 research outputs found

    Resveratrol: A Multifunctional Compound Improving Endothelial Function: Editorial to: “Resveratrol Supplementation Gender Independently Improves Endothelial Reactivity and Suppresses Superoxide Production in Healthy Rats” by S. Soylemez et al.

    Get PDF
    The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression and activity of NADPH oxidases, resveratrol inhibits superoxide-mediated NO inactivation. Some resveratrol effects are mediated by sirtuin 1 (SIRT1) or estrogen receptors, respectively

    Intersecting transcription networks constrain gene regulatory evolution

    No full text
    Epistasis—the non-additive interactions between different genetic loci—constrains evolutionary pathways, blocking some and permitting others(1–8). For biological networks such as transcription circuits, the nature of these constraints and their consequences are largely unknown. Here we describe the evolutionary pathways of a transcription network that controls the response to mating pheromone in yeasts(9). A component of this network, the transcription regulator Ste12, has evolved two different modes of binding to a set of its target genes. In one group of species, Ste12 binds to specific DNA binding sites, while in another lineage it occupies DNA indirectly, relying on a second transcription regulator to recognize DNA. We show, through the construction of various possible evolutionary intermediates, that evolution of the direct mode of DNA binding was not directly accessible to the ancestor. Instead, it was contingent on a lineage-specific change to an overlapping transcription network with a different function, the specification of cell type. These results show that analyzing and predicting the evolution of cis-regulatory regions requires an understanding of their positions in overlapping networks, as this placement constrains the available evolutionary pathways
    corecore