5 research outputs found

    Development of a Beam Loss Monitor and Transverse Beam Dynamics Studies at ARRONAX C70XP Cyclotron

    No full text
    International audienceThe ARRONAX Interest Public Group uses a multi-particle, high energy and high intensity industrial accelerator which has several beamlines used for various purposes. For improvement of operations, ARRONAX has foster and installed robust air-based Beam Loss Monitors (BLMs) outside the beam pipes. BLMs consist of four active detecting plates and are integrated within the experimental physics and industrial control system (EPICS) monitoring and data acquisition system. Each BLM has been tested for the pre-commissioning phase with beams at low intensity (600pA to 6nA on target). Comparative studies and selection of the BLMs has led to their installation at high intensity beam lines. BLMs are now used in beam dynamics studies to investigate transverse characteristics while in regular operation. They support present and future operations extension foreseen at ARRONAX. The results from experimental studies on BLMs at low beam intensity and status of beam dynamics studies at high intensity (A) are presented here. Keywords: BLM, beam dynamics, EPICS, Gas ionization detector, cyclotron, proton

    Investigation on the injection of the Arronax Cyclotron 70XP

    No full text
    International audienceA 70 MeV cyclotron is being used at the Arronax GIP (Interest Public Group), France, for various types of R&D on nuclear, biological and chemical reactions with beams and radioisotopes production. In order to adapt its usage for experiments and users demands of high peak intensity, above an equivalent average of a few µA, the injection is being adapted. Several studies are thus being performed in this section. These include the newly installed chopper-based system and the injection collimator. This paper details the various studies, specifically the signal purity obtained in the pulsed mode. A mode particularly adapted for flash irradiation

    The Pulsing Chopper-Based System of the Arronax C70XP Cyclotron

    No full text
    International audienceThe Arronax Public Interest Group (GIP) uses a multi-particle cyclotron to perform irradiation from a few pA up to hundreds of uA on various experiments and targets *. To support further low intensity usage and extend the beam time structure required for experiments such as pulsed experiments studies (radiolysis, proton therapeutic irradiation) and high intensity impact studies, it has been devised a pulsing system in the injection of the cyclotron. This system combines the use of a chopper, low frequency switch, and a control system based on the new extended EPICS network. This paper details the pulsing system adopted at Arronax, the last results in terms of time structure, various low intensity experimental studies performed with alpha and proton beams and the dedicated photon diagnostics

    The Injection and Chopper-Based System at Arronax C70XP Cyclotron

    No full text
    International audienceThe multi-particle cyclotron of the Arronax Public Interest Group (GIP) is used to perform irradiation up to hundreds of µA on various experiments and targets. To support low and high average intensity usage and adapt the beam time structure required for high peak intensity operation and experiments such as pulsed experiments studies, it has been devised a pulsing system in the injection of the cyclotron. This system combines the use of a chopper, low frequency switch, and a control system based on the new extended EPICS network. This paper details the pulsing system adopted at Arronax, updates and results for various intensity experimental studies performed with alpha and proton beams. Updated work on the simulation of the injection is also shown, specifically towards high intensity future irradiation

    Installation, Use and Follow-Up of an Emittance-Meter at the Arronax Cyclotron 70XP

    No full text
    International audienceThe 70 MeV cyclotron group of the Arronax GIP (Interest Public Group), France, foresees to increase its beam intensity on target. For this, several beam studies are being performed in the various sections of the accelerator including the injection. Thus, an Allison-type emittance-meter has been installed in this section above the cyclotron and downstream a quadrupole triplet. Installation and the first results of a campaign of measurements are presented including high intensity runs, up to 1 mA for 40 keV H⁻ ions. The emittance-meter is expected to be used with several accelerators throughout the world. Therefore, a strategy on the follow-up of the activation of sample materials used in the equipment is being established and is described in the paper
    corecore