34 research outputs found

    Protective Ag :TiO2 thin films for pressure sensors in orthopedic prosthesis: the importance of composition, structural and morphological features on the biological response of the coatings

    Get PDF
    DC reactive magnetron sputtered Ag:TiO2 nanocomposite thin films were developed to be used as protective coatings in pressure sensor devices. The coatings, with Ag content varying from 0 to about 30 at.%, were prepared and characterized in order to study their biological response. The as-deposited samples were annealed in vacuum at 500 °C in order to evaluate the influence of their morphological and structural differences over the response elicited upon contact with simulated bodily fluids and cultured human cells, as well as selected microorganisms. The results showed that the annealing treatment produced less porous films with an enhanced structure, with a significant reduction in structural defects and improved crystallinity. Additionally, samples with higher Ag contents (≥12.8 at.%) exhibited Ag agglomerates/clusters at the surface, a result anticipated from the XRD data. The crystallization of the TiO2 matrix was also observed by XRD analysis, albeit delayed by the dispersion of Ag into the matrix. Biological characterization showed that the antimicrobial activity and cytotoxicity of the coatings were directly related with their composition, closely followed by the particular structural and morphological features, namely those resulting from annealing process.This research is partially sponsored by FEDER funds through the program COMPETE—Programa Operacional Factores de Competitividade and by national funds through FCT—Fundação para a Ciência e a Tecnologia, under the projects PEst-C/EME/UI0285/2011, PTDC/SAU-ENB/116850/2010, PTDC/CTM-NAN/112574/2009P. T Matamá acknowledges FCT for Grant SFRH/BPD/47555/2008

    Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties

    Full text link
    corecore