11,395 research outputs found
Coarsening Dynamics of Granular Heaplets in Tapped Granular Layers
A semi-continuum model is introduced to study the dynamics of the formation
of granular heaplets in tapped granular layers. By taking into account the
energy dissipation of collisions and screening effects due to avalanches, this
model is able to reproduce qualitatively the pattern of these heaplets. Our
simulations show that the granular heaplets are characterised by an effective
surface tension which depends on the magnitude of the tapping intensity. Also,
we observe that there is a coarsening effect in that the average size of the
heaplets, V grows as the number of taps k increases. The growth law at
intermediate times can be fitted by a scaling function V ~ k^z but the range of
validity of the power law is limited by size effects. The growth exponent z
appears to diverge as the tapping intensity is increased.Comment: 4 pages, 4 figure
Chemical Ecology of Marine Cyanobacterial Secondary Metabolites: a Mini-review
More than 300 nitrogen-containing secondary metabolites have been reported from the procaryotic marinecyanobacteria. A majority of these compounds are of the polypeptide or mixed polyketide-polypeptidestructural class and they are a potential source of novel pharmaceuticals. In spite of the chemical richnessof marine cyanobacteria, not much is known regarding their ecological functions. To date only a handful ofmarine cyanobacterial compounds have been examined for their involvement in predator-prey interactions.This mini-review surveys the various chemical ecology studies conducted on marine cyanobacterialcompounds. From these ecological studies, many marine cyanobacterial compounds are known to deterfeeding by several species of marine predators. Such chemical defense may be crucial in maintaining thepopulation of marine cyanobacterial bloom in nature. In addition, a series of ecological studies from ourlaboratory revealed the anti-settlement properties of a number of benthic marine cyanobacterialcompounds. These studies suggested marine cyanobacteria as a potential source of natural antifoulants forthe control of fouling organisms
Chemical Ecology of Marine Cyanobacterial Secondary Metabolites: a Mini-review
More than 300 nitrogen-containing secondary metabolites have been reported from the procaryotic marinecyanobacteria. A majority of these compounds are of the polypeptide or mixed polyketide-polypeptidestructural class and they are a potential source of novel pharmaceuticals. In spite of the chemical richnessof marine cyanobacteria, not much is known regarding their ecological functions. To date only a handful ofmarine cyanobacterial compounds have been examined for their involvement in predator-prey interactions.This mini-review surveys the various chemical ecology studies conducted on marine cyanobacterialcompounds. From these ecological studies, many marine cyanobacterial compounds are known to deterfeeding by several species of marine predators. Such chemical defense may be crucial in maintaining thepopulation of marine cyanobacterial bloom in nature. In addition, a series of ecological studies from ourlaboratory revealed the anti-settlement properties of a number of benthic marine cyanobacterialcompounds. These studies suggested marine cyanobacteria as a potential source of natural antifoulants forthe control of fouling organisms
Skeleton and fractal scaling in complex networks
We find that the fractal scaling in a class of scale-free networks originates
from the underlying tree structure called skeleton, a special type of spanning
tree based on the edge betweenness centrality. The fractal skeleton has the
property of the critical branching tree. The original fractal networks are
viewed as a fractal skeleton dressed with local shortcuts. An in-silico model
with both the fractal scaling and the scale-invariance properties is also
constructed. The framework of fractal networks is useful in understanding the
utility and the redundancy in networked systems.Comment: 4 pages, 2 figures, final version published in PR
Anisotropic Superconducting Properties of Optimally Doped BaFe(AsP) under Pressure
Magnetic measurements on optimally doped single crystals of
BaFe(AsP) () with magnetic fields applied
along different crystallographic axes were performed under pressure, enabling
the pressure evolution of coherence lengths and the anisotropy factor to be
followed. Despite a decrease in the superconducting critical temperature, our
studies reveal that the superconducting properties become more anisotropic
under pressure. With appropriate scaling, we directly compare these properties
with the values obtained for BaFe(AsP) as a function of
phosphorus content.Comment: 5 pages, 3 figure
Chemical Pressure and Physical Pressure in BaFe_2(As_{1-x}P_{x})_2
Measurements of the superconducting transition temperature, T_c, under
hydrostatic pressure via bulk AC susceptibility were carried out on several
concentrations of phosphorous substitution in BaFe_2(As_{1-x}P_x)_2. The
pressure dependence of unsubstituted BaFe_2As_2, phosphorous concentration
dependence of BaFe_2(As_{1-x}P_x)_2, as well as the pressure dependence of
BaFe_2(As_{1-x}P_x)_2 all point towards an identical maximum T_c of 31 K. This
demonstrates that phosphorous substitution and physical pressure result in
similar superconducting phase diagrams, and that phosphorous substitution does
not induce substantial impurity scattering.Comment: 5 pages, 4 figures, to be published in Journal of the Physical
Society of Japa
- …