10,674 research outputs found
Sandpiles on multiplex networks
We introduce the sandpile model on multiplex networks with more than one type
of edge and investigate its scaling and dynamical behaviors. We find that the
introduction of multiplexity does not alter the scaling behavior of avalanche
dynamics; the system is critical with an asymptotic power-law avalanche size
distribution with an exponent on duplex random networks. The
detailed cascade dynamics, however, is affected by the multiplex coupling. For
example, higher-degree nodes such as hubs in scale-free networks fail more
often in the multiplex dynamics than in the simplex network counterpart in
which different types of edges are simply aggregated. Our results suggest that
multiplex modeling would be necessary in order to gain a better understanding
of cascading failure phenomena of real-world multiplex complex systems, such as
the global economic crisis.Comment: 7 pages, 7 figure
Learning activation functions from data using cubic spline interpolation
Neural networks require a careful design in order to perform properly on a
given task. In particular, selecting a good activation function (possibly in a
data-dependent fashion) is a crucial step, which remains an open problem in the
research community. Despite a large amount of investigations, most current
implementations simply select one fixed function from a small set of
candidates, which is not adapted during training, and is shared among all
neurons throughout the different layers. However, neither two of these
assumptions can be supposed optimal in practice. In this paper, we present a
principled way to have data-dependent adaptation of the activation functions,
which is performed independently for each neuron. This is achieved by
leveraging over past and present advances on cubic spline interpolation,
allowing for local adaptation of the functions around their regions of use. The
resulting algorithm is relatively cheap to implement, and overfitting is
counterbalanced by the inclusion of a novel damping criterion, which penalizes
unwanted oscillations from a predefined shape. Experimental results validate
the proposal over two well-known benchmarks.Comment: Submitted to the 27th Italian Workshop on Neural Networks (WIRN 2017
Correlated multiplexity and connectivity of multiplex random networks
Nodes in a complex networked system often engage in more than one type of
interactions among them; they form a multiplex network with multiple types of
links. In real-world complex systems, a node's degree for one type of links and
that for the other are not randomly distributed but correlated, which we term
correlated multiplexity. In this paper we study a simple model of multiplex
random networks and demonstrate that the correlated multiplexity can
drastically affect the properties of giant component in the network.
Specifically, when the degrees of a node for different interactions in a duplex
Erdos-Renyi network are maximally correlated, the network contains the giant
component for any nonzero link densities. In contrast, when the degrees of a
node are maximally anti-correlated, the emergence of giant component is
significantly delayed, yet the entire network becomes connected into a single
component at a finite link density. We also discuss the mixing patterns and the
cases with imperfect correlated multiplexity.Comment: Revised version, 12 pages, 6 figure
Anisotropic Superconducting Properties of Optimally Doped BaFe(AsP) under Pressure
Magnetic measurements on optimally doped single crystals of
BaFe(AsP) () with magnetic fields applied
along different crystallographic axes were performed under pressure, enabling
the pressure evolution of coherence lengths and the anisotropy factor to be
followed. Despite a decrease in the superconducting critical temperature, our
studies reveal that the superconducting properties become more anisotropic
under pressure. With appropriate scaling, we directly compare these properties
with the values obtained for BaFe(AsP) as a function of
phosphorus content.Comment: 5 pages, 3 figure
Corporate contact tracing as a pandemic response
Since the start of the COVID-19 pandemic, a steady stream of propositions from tech giants and start-ups alike has furnished us with the idea that GPS- or Bluetooth-enabled contact tracing apps are a vital part of the pandemic response. This commentary considers these apps as ‘corporate contact tracing’, emphasizing the private-sector role that such developments imply. We first discuss corporate contact tracing’s potential to de-center the power of public health authorities. Then, using the frames of surveillance capitalism and disaster capitalism, we suggest how corporate contact tracing might feed the rise of corporate power in the public sphere. We question its capacity to address structural inequalities and to foster a social justice vision of public health. And, we wonder whether corporate contact tracing might intensify the effects of discriminatory design and algorithmic oppression. We conclude by calling for a discussion of this technology beyond questions of privacy and efficacy
A genome-wide RNAi screen identifies factors required for distinct stages of C-elegans piRNA biogenesis
In animals, piRNAs and their associated Piwi proteins guard germ cell genomes against mobile genetic elements via an RNAi-like mechanism. In Caenorhabditis elegans, 21U-RNAs comprise the piRNA class, and these collaborate with 22G RNAs via unclear mechanisms to discriminate self from nonself and selectively and heritably silence the latter. Recent work indicates that 21U-RNAs are post-transcriptional processing products of individual transcription units that produce similar to 26-nucleotide capped precursors. However, nothing is known of how the expression of precursors is controlled or how primary transcripts give rise to mature small RNAs. We conducted a genome-wide RNAi screen to identify components of the 21U biogenesis machinery. Screening by direct, quantitative PCR (qPCR)-based measurements of mature 21U-RNA levels, we identified 22 genes important for 21U-RNA production, termed TOFUs (Twenty-One-u Fouled Ups). We also identified seven genes that normally repress 21U production. By measuring mature 21U-RNA and precursor levels for the seven strongest hits from the screen, we assigned factors to discrete stages of 21U-RNA production. Our work identifies for the first time factors separately required for the transcription of 21U precursors and the processing of these precursors into mature 21U-RNAs, thereby providing a resource for studying the biogenesis of this important small RNA class
Probing Spin-Charge Relation by Magnetoconductance in One-Dimensional Polymer Nanofibers
Polymer nanofibers are one-dimensional organic hydrocarbon systems containing
conducting polymers where the non-linear local excitations such as solitons,
polarons and bipolarons formed by the electron-phonon interaction were
predicted. Magnetoconductance (MC) can simultaneously probe both the spin and
charge of these mobile species and identify the effects of electron-electron
interactions on these nonlinear excitations. Here we report our observations of
a qualitatively different MC in polyacetylene (PA) and in polyaniline (PANI)
and polythiophene (PT) nanofibers. In PA the MC is essentially zero, but it is
present in PANI and PT. The universal scaling behavior and the zero (finite) MC
in PA (PANI and PT) nanofibers provide evidence of Coulomb interactions between
spinless charged solitons (interacting polarons which carry both spin and
charge)
Chemical Pressure and Physical Pressure in BaFe_2(As_{1-x}P_{x})_2
Measurements of the superconducting transition temperature, T_c, under
hydrostatic pressure via bulk AC susceptibility were carried out on several
concentrations of phosphorous substitution in BaFe_2(As_{1-x}P_x)_2. The
pressure dependence of unsubstituted BaFe_2As_2, phosphorous concentration
dependence of BaFe_2(As_{1-x}P_x)_2, as well as the pressure dependence of
BaFe_2(As_{1-x}P_x)_2 all point towards an identical maximum T_c of 31 K. This
demonstrates that phosphorous substitution and physical pressure result in
similar superconducting phase diagrams, and that phosphorous substitution does
not induce substantial impurity scattering.Comment: 5 pages, 4 figures, to be published in Journal of the Physical
Society of Japa
- …