10,674 research outputs found

    Sandpiles on multiplex networks

    Full text link
    We introduce the sandpile model on multiplex networks with more than one type of edge and investigate its scaling and dynamical behaviors. We find that the introduction of multiplexity does not alter the scaling behavior of avalanche dynamics; the system is critical with an asymptotic power-law avalanche size distribution with an exponent τ=3/2\tau = 3/2 on duplex random networks. The detailed cascade dynamics, however, is affected by the multiplex coupling. For example, higher-degree nodes such as hubs in scale-free networks fail more often in the multiplex dynamics than in the simplex network counterpart in which different types of edges are simply aggregated. Our results suggest that multiplex modeling would be necessary in order to gain a better understanding of cascading failure phenomena of real-world multiplex complex systems, such as the global economic crisis.Comment: 7 pages, 7 figure

    Learning activation functions from data using cubic spline interpolation

    Full text link
    Neural networks require a careful design in order to perform properly on a given task. In particular, selecting a good activation function (possibly in a data-dependent fashion) is a crucial step, which remains an open problem in the research community. Despite a large amount of investigations, most current implementations simply select one fixed function from a small set of candidates, which is not adapted during training, and is shared among all neurons throughout the different layers. However, neither two of these assumptions can be supposed optimal in practice. In this paper, we present a principled way to have data-dependent adaptation of the activation functions, which is performed independently for each neuron. This is achieved by leveraging over past and present advances on cubic spline interpolation, allowing for local adaptation of the functions around their regions of use. The resulting algorithm is relatively cheap to implement, and overfitting is counterbalanced by the inclusion of a novel damping criterion, which penalizes unwanted oscillations from a predefined shape. Experimental results validate the proposal over two well-known benchmarks.Comment: Submitted to the 27th Italian Workshop on Neural Networks (WIRN 2017

    Correlated multiplexity and connectivity of multiplex random networks

    Full text link
    Nodes in a complex networked system often engage in more than one type of interactions among them; they form a multiplex network with multiple types of links. In real-world complex systems, a node's degree for one type of links and that for the other are not randomly distributed but correlated, which we term correlated multiplexity. In this paper we study a simple model of multiplex random networks and demonstrate that the correlated multiplexity can drastically affect the properties of giant component in the network. Specifically, when the degrees of a node for different interactions in a duplex Erdos-Renyi network are maximally correlated, the network contains the giant component for any nonzero link densities. In contrast, when the degrees of a node are maximally anti-correlated, the emergence of giant component is significantly delayed, yet the entire network becomes connected into a single component at a finite link density. We also discuss the mixing patterns and the cases with imperfect correlated multiplexity.Comment: Revised version, 12 pages, 6 figure

    Anisotropic Superconducting Properties of Optimally Doped BaFe2_2(As0.65_{0.65}P0.35_{0.35})2_2 under Pressure

    Full text link
    Magnetic measurements on optimally doped single crystals of BaFe2_2(As1x_{1-x}Px_{x})2_2 (x0.35x\approx0.35) with magnetic fields applied along different crystallographic axes were performed under pressure, enabling the pressure evolution of coherence lengths and the anisotropy factor to be followed. Despite a decrease in the superconducting critical temperature, our studies reveal that the superconducting properties become more anisotropic under pressure. With appropriate scaling, we directly compare these properties with the values obtained for BaFe2_2(As1x_{1-x}Px_{x})2_2 as a function of phosphorus content.Comment: 5 pages, 3 figure

    Corporate contact tracing as a pandemic response

    Get PDF
    Since the start of the COVID-19 pandemic, a steady stream of propositions from tech giants and start-ups alike has furnished us with the idea that GPS- or Bluetooth-enabled contact tracing apps are a vital part of the pandemic response. This commentary considers these apps as ‘corporate contact tracing’, emphasizing the private-sector role that such developments imply. We first discuss corporate contact tracing’s potential to de-center the power of public health authorities. Then, using the frames of surveillance capitalism and disaster capitalism, we suggest how corporate contact tracing might feed the rise of corporate power in the public sphere. We question its capacity to address structural inequalities and to foster a social justice vision of public health. And, we wonder whether corporate contact tracing might intensify the effects of discriminatory design and algorithmic oppression. We conclude by calling for a discussion of this technology beyond questions of privacy and efficacy

    A genome-wide RNAi screen identifies factors required for distinct stages of C-elegans piRNA biogenesis

    Get PDF
    In animals, piRNAs and their associated Piwi proteins guard germ cell genomes against mobile genetic elements via an RNAi-like mechanism. In Caenorhabditis elegans, 21U-RNAs comprise the piRNA class, and these collaborate with 22G RNAs via unclear mechanisms to discriminate self from nonself and selectively and heritably silence the latter. Recent work indicates that 21U-RNAs are post-transcriptional processing products of individual transcription units that produce similar to 26-nucleotide capped precursors. However, nothing is known of how the expression of precursors is controlled or how primary transcripts give rise to mature small RNAs. We conducted a genome-wide RNAi screen to identify components of the 21U biogenesis machinery. Screening by direct, quantitative PCR (qPCR)-based measurements of mature 21U-RNA levels, we identified 22 genes important for 21U-RNA production, termed TOFUs (Twenty-One-u Fouled Ups). We also identified seven genes that normally repress 21U production. By measuring mature 21U-RNA and precursor levels for the seven strongest hits from the screen, we assigned factors to discrete stages of 21U-RNA production. Our work identifies for the first time factors separately required for the transcription of 21U precursors and the processing of these precursors into mature 21U-RNAs, thereby providing a resource for studying the biogenesis of this important small RNA class

    Probing Spin-Charge Relation by Magnetoconductance in One-Dimensional Polymer Nanofibers

    Get PDF
    Polymer nanofibers are one-dimensional organic hydrocarbon systems containing conducting polymers where the non-linear local excitations such as solitons, polarons and bipolarons formed by the electron-phonon interaction were predicted. Magnetoconductance (MC) can simultaneously probe both the spin and charge of these mobile species and identify the effects of electron-electron interactions on these nonlinear excitations. Here we report our observations of a qualitatively different MC in polyacetylene (PA) and in polyaniline (PANI) and polythiophene (PT) nanofibers. In PA the MC is essentially zero, but it is present in PANI and PT. The universal scaling behavior and the zero (finite) MC in PA (PANI and PT) nanofibers provide evidence of Coulomb interactions between spinless charged solitons (interacting polarons which carry both spin and charge)

    Chemical Pressure and Physical Pressure in BaFe_2(As_{1-x}P_{x})_2

    Full text link
    Measurements of the superconducting transition temperature, T_c, under hydrostatic pressure via bulk AC susceptibility were carried out on several concentrations of phosphorous substitution in BaFe_2(As_{1-x}P_x)_2. The pressure dependence of unsubstituted BaFe_2As_2, phosphorous concentration dependence of BaFe_2(As_{1-x}P_x)_2, as well as the pressure dependence of BaFe_2(As_{1-x}P_x)_2 all point towards an identical maximum T_c of 31 K. This demonstrates that phosphorous substitution and physical pressure result in similar superconducting phase diagrams, and that phosphorous substitution does not induce substantial impurity scattering.Comment: 5 pages, 4 figures, to be published in Journal of the Physical Society of Japa
    corecore