11,017 research outputs found

    Bow-Tie Microstrip Antenna Design

    Get PDF
    In this paper, the bow-tie microstrip antennas have been designed with two different angles of 40° and 80°. An investigaton on the effect of the angle to the return loss and radiation patterns had been carried out. The impedance matching network with the niicrostrip transmission line feeding was used in this study. Simulation and measurement results for the return loss and radiation patterns were presented

    Reply to "Comment on 'Universal Behavior of Load Distribution in Scale-Free Networks'"

    Full text link
    Reply to "Comment on 'Universal Behavior of Load Distribution in Scale-Free Networks.'"Comment: 1 page, 1 figur

    Sandpiles on multiplex networks

    Full text link
    We introduce the sandpile model on multiplex networks with more than one type of edge and investigate its scaling and dynamical behaviors. We find that the introduction of multiplexity does not alter the scaling behavior of avalanche dynamics; the system is critical with an asymptotic power-law avalanche size distribution with an exponent τ=3/2\tau = 3/2 on duplex random networks. The detailed cascade dynamics, however, is affected by the multiplex coupling. For example, higher-degree nodes such as hubs in scale-free networks fail more often in the multiplex dynamics than in the simplex network counterpart in which different types of edges are simply aggregated. Our results suggest that multiplex modeling would be necessary in order to gain a better understanding of cascading failure phenomena of real-world multiplex complex systems, such as the global economic crisis.Comment: 7 pages, 7 figure

    Hydrothermal synthesis of perovskite and pyrochlore powders of potassium tantalate

    Get PDF
    Potassium tantalate powders were hydrothermally synthesized at 100 to 200 °C in 4 to 15 M aqueous KOH solutions. A defect pyrochlore, Kta_(2)O_(5)(OH). nH2O (n ≈ 1.4), was obtained at 4 M KOH, but at 7–12 M KOH, this pyrochlore was gradually replaced by a defect perovskite as the stable phase. At 15 M KOH, there was no intermediate pyrochlore, only a defect perovskite, K_(0.85)Ta_(0.92)O_(2.43)(OH)_(0.57) 0.15H_(2)O. Synthesis at higher KOH concentrations led to greater incorporation of protons in the perovskite structures. The potassium vacancies required for charge compensation of incorporated protons could accommodate water molecules in the perovskite structure

    Hydrothermal synthesis of KNbO_3 and NaNbO_3 powders

    Get PDF
    Orthorhombic KNbO_3 and NaNbO_3 powders were hydrothermally synthesized in KOH and NaOH solutions (6.7–15 M) at 150 and 200 °C. An intermediate hexaniobate species formed first before eventually converting to the perovskite phase. For synthesis in KOH solutions, the stability of the intermediate hexaniobate ion increased with decreasing KOH concentrations and temperatures. This led to significant variations in the induction periods and accounted for the large disparity in the mass of recovered powder for different processing parameters. It is also believed that protons were incorporated in the lattice of the as-synthesized KNbO_3 powders as water molecules and hydroxyl ions

    A system to enrich for primitive streak-derivatives, definitive endoderm and mesoderm, from pluripotent cells in culture

    Get PDF
    Two lineages of endoderm develop during mammalian embryogenesis, the primitive endoderm in the pre-implantation blastocyst and the definitive endoderm at gastrulation. This complexity of endoderm cell populations is mirrored during pluripotent cell differentiation in vitro and has hindered the identification and purification of the definitive endoderm for use as a substrate for further differentiation. The aggregation and differentiation of early primitive ectoderm-like (EPL) cells, resulting in the formation of EPL-cell derived embryoid bodies (EPLEBs), is a model of gastrulation that progresses through the sequential formation of primitive streak-like intermediates to nascent mesoderm and more differentiated mesoderm populations. EPL cell-derived EBs have been further analysed for the formation of definitive endoderm by detailed morphological studies, gene expression and a protein uptake assay. In comparison to embryoid bodies derived from ES cells, which form primitive and definitive endoderm, the endoderm compartment of embryoid bodies formed from EPL cells was comprised almost exclusively of definitive endoderm. Definitive endoderm was defined as a population of squamous cells that expressed Sox17, CXCR4 and Trh, which formed without the prior formation of primitive endoderm and was unable to endocytose horseradish peroxidase from the medium. Definitive endoderm formed in EPLEBs provides a substrate for further differentiation into specific endoderm lineages; these lineages can be used as research tools for understanding the mechanisms controlling lineage establishment and the nature of the transient intermediates formed. The similarity between mouse EPL cells and human ES cells suggests EPLEBs can be used as a model system for the development of technologies to enrich for the formation of human ES cell-derived definitive endoderm in the future.Sveltana Vassilieva, Hweee Ngee Goh, Kevin X. Lau, James N. Hughes, Mary Familari, Peter D. Rathjen and Joy Rathje

    Waiting time dynamics of priority-queue networks

    Full text link
    We study the dynamics of priority-queue networks, generalizations of the binary interacting priority queue model introduced by Oliveira and Vazquez [Physica A {\bf 388}, 187 (2009)]. We found that the original AND-type protocol for interacting tasks is not scalable for the queue networks with loops because the dynamics becomes frozen due to the priority conflicts. We then consider a scalable interaction protocol, an OR-type one, and examine the effects of the network topology and the number of queues on the waiting time distributions of the priority-queue networks, finding that they exhibit power-law tails in all cases considered, yet with model-dependent power-law exponents. We also show that the synchronicity in task executions, giving rise to priority conflicts in the priority-queue networks, is a relevant factor in the queue dynamics that can change the power-law exponent of the waiting time distribution.Comment: 5 pages, 3 figures, minor changes, final published versio

    Immobilization of α-amylase from anoxybacillus sp. SK3-4 on relizyme and immobead supports

    Get PDF
    α-Amylase from Anoxybacillus sp. SK3-4 (ASKA) is a thermostable enzyme that produces a high level of maltose from starches. A truncated ASKA (TASKA) variant with improved expression and purification efficiency was characterized in an earlier study. In this work, TASKA was purified and immobilized through covalent attachment on three epoxide (ReliZyme EP403/M, Immobead IB-150P, and Immobead IB-150A) and an amino-epoxide (ReliZyme HFA403/M) activated supports. Several parameters affecting immobilization were analyzed, including the pH, temperature, and quantity (mg) of enzyme added per gram of support. The influence of the carrier surface properties, pore sizes, and lengths of spacer arms (functional groups) on biocatalyst performances were studied. Free and immobilized TASKAs were stable at pH 6.0-9.0 and active at pH 8.0. The enzyme showed optimal activity and considerable stability at 60 ?C. Immobilized TASKA retained 50% of its initial activity after 5-12 cycles of reuse. Upon degradation of starches and amylose, only immobilized TASKA on ReliZyme HFA403/M has comparable hydrolytic ability with the free enzyme. To the best of our knowledge, this is the first report of an immobilization study of an α-amylase from Anoxybacillus spp. and the first report of α-amylase immobilization using ReliZyme and Immobeads as supports

    Correlated multiplexity and connectivity of multiplex random networks

    Full text link
    Nodes in a complex networked system often engage in more than one type of interactions among them; they form a multiplex network with multiple types of links. In real-world complex systems, a node's degree for one type of links and that for the other are not randomly distributed but correlated, which we term correlated multiplexity. In this paper we study a simple model of multiplex random networks and demonstrate that the correlated multiplexity can drastically affect the properties of giant component in the network. Specifically, when the degrees of a node for different interactions in a duplex Erdos-Renyi network are maximally correlated, the network contains the giant component for any nonzero link densities. In contrast, when the degrees of a node are maximally anti-correlated, the emergence of giant component is significantly delayed, yet the entire network becomes connected into a single component at a finite link density. We also discuss the mixing patterns and the cases with imperfect correlated multiplexity.Comment: Revised version, 12 pages, 6 figure
    corecore