10,702 research outputs found

    A system to enrich for primitive streak-derivatives, definitive endoderm and mesoderm, from pluripotent cells in culture

    Get PDF
    Two lineages of endoderm develop during mammalian embryogenesis, the primitive endoderm in the pre-implantation blastocyst and the definitive endoderm at gastrulation. This complexity of endoderm cell populations is mirrored during pluripotent cell differentiation in vitro and has hindered the identification and purification of the definitive endoderm for use as a substrate for further differentiation. The aggregation and differentiation of early primitive ectoderm-like (EPL) cells, resulting in the formation of EPL-cell derived embryoid bodies (EPLEBs), is a model of gastrulation that progresses through the sequential formation of primitive streak-like intermediates to nascent mesoderm and more differentiated mesoderm populations. EPL cell-derived EBs have been further analysed for the formation of definitive endoderm by detailed morphological studies, gene expression and a protein uptake assay. In comparison to embryoid bodies derived from ES cells, which form primitive and definitive endoderm, the endoderm compartment of embryoid bodies formed from EPL cells was comprised almost exclusively of definitive endoderm. Definitive endoderm was defined as a population of squamous cells that expressed Sox17, CXCR4 and Trh, which formed without the prior formation of primitive endoderm and was unable to endocytose horseradish peroxidase from the medium. Definitive endoderm formed in EPLEBs provides a substrate for further differentiation into specific endoderm lineages; these lineages can be used as research tools for understanding the mechanisms controlling lineage establishment and the nature of the transient intermediates formed. The similarity between mouse EPL cells and human ES cells suggests EPLEBs can be used as a model system for the development of technologies to enrich for the formation of human ES cell-derived definitive endoderm in the future.Sveltana Vassilieva, Hweee Ngee Goh, Kevin X. Lau, James N. Hughes, Mary Familari, Peter D. Rathjen and Joy Rathje

    Safely dissolvable and healable active packaging films based on alginate and pectin

    Get PDF
    Extensive usage of long-lasting petroleum based plastics for short-lived application such as packaging has raised concerns regarding their role in environmental pollution. In this research, we have developed active, healable, and safely dissolvable alginate-pectin based biocomposites that have potential applications in food packaging. The morphological study revealed the rough surface of these biocomposite films. Tensile properties indicated that the fabricated samples have mechanical properties in the range of commercially available packaging films while possessing excellent healing effciency. Biocomposite films exhibited higher hydrophobicity properties compared to neat alginate films. Thermal analysis indicated that crosslinked biocomposite samples possess higher thermal stability in temperatures below 120 °C, while antibacterial analysis against E. coli and S. aureus revealed the antibacterial properties of the prepared samples against different bacteria. The fabricated biodegradable multi-functional biocomposite films possess various imperative properties, making them ideal for utilization as packaging material

    Strong suppression of superconductivity by divalent Ytterbium Kondo-holes in CeCoIn_5

    Full text link
    To study the nature of partially substituted Yb-ions in a Ce-based Kondo lattice, we fabricated high quality Ce_{1-x}Yb_xCoIn_5 epitaxial thin films using molecular beam epitaxy. We find that the Yb-substitution leads to a linear decrease of the unit cell volume, indicating that Yb-ions are divalent forming Kondo-holes in Ce_{1-x}Yb_xCoIn_5, and leads to a strong suppression of the superconductivity and Kondo coherence. These results, combined with the measurements of Hall effect, indicate that Yb-ions act as nonmagnetic impurity scatters in the coherent Kondo lattice without serious suppression of the antiferromagnetic fluctuations. These are in stark contrast to previous studies performed using bulk single crystals, which claim the importance of valence fluctuations of Yb-ions. The present work also highlights the suitability of epitaxial films in the study of the impurity effect on the Kondo lattice.Comment: 5 pages, 4 figure

    Sandpiles on multiplex networks

    Full text link
    We introduce the sandpile model on multiplex networks with more than one type of edge and investigate its scaling and dynamical behaviors. We find that the introduction of multiplexity does not alter the scaling behavior of avalanche dynamics; the system is critical with an asymptotic power-law avalanche size distribution with an exponent τ=3/2\tau = 3/2 on duplex random networks. The detailed cascade dynamics, however, is affected by the multiplex coupling. For example, higher-degree nodes such as hubs in scale-free networks fail more often in the multiplex dynamics than in the simplex network counterpart in which different types of edges are simply aggregated. Our results suggest that multiplex modeling would be necessary in order to gain a better understanding of cascading failure phenomena of real-world multiplex complex systems, such as the global economic crisis.Comment: 7 pages, 7 figure

    Cluster size dependence of high-order harmonic generation

    Get PDF
    We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3*10^16 cm^{-3} to 3x10^18 cm{-3}) at two different reservoir temperatures (303 K and 363 K). For the firrst time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. By comparing the measured harmonic yield from a thin jet with the calculated corresponding yield from monomers alone, we find an increased emission of the harmonics when the average cluster size is less than 3000. Using g, under the assumption that the emission from monomers and clusters add up coherently, we calculate the ratio of the average single-atom response of an atom within a cluster to that of a monomer and find an enhancement of around 10 for very small average cluster size (~200). We do not find any dependence of the cut-off frequency on the composition of the cluster jet. This implies that HHG in clusters is based on electrons that return to their parent ions and not to neighbouring ions in the cluster. To fully employ the enhanced average single-atom response found for small average cluster sizes (~200), the nozzle producing the cluster jet must provide a large liquid mass fraction at these small cluster sizes for increasing the harmonic yield. Moreover, cluster jets may allow for quasi-phase matching, as the higher mass of clusters allows for a higher density contrast in spatially structuring the nonlinear medium.Comment: 16 pages, 6 figure

    Single-shot fluctuations in waveguided high-harmonic generation

    Get PDF
    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot drive laser beam profiles and single-shot high-harmonic beam profiles we prove the absence of drive laser beam-pointing-induced fluctuations in the high-harmonic output. We attribute the main source of high-harmonic fluctuations to ionization-induced nonlinear mode mixing during propagation of the drive laser pulse inside the capillary waveguide

    Controllable Rashba spin-orbit interaction in artificially engineered superlattices involving the heavy-fermion superconductor CeCoIn5

    Get PDF
    By using a molecular beam epitaxy technique, we fabricate a new type of superconducting superlattices with controlled atomic layer thicknesses of alternating blocks between heavy fermion superconductor CeCoIn_5, which exhibits a strong Pauli pair-breaking effect, and nonmagnetic metal YbCoIn_5. The introduction of the thickness modulation of YbCoIn_5 block layers breaks the inversion symmetry centered at the superconducting block of CeCoIn_5. This configuration leads to dramatic changes in the temperature and angular dependence of the upper critical field, which can be understood by considering the effect of the Rashba spin-orbit interaction arising from the inversion symmetry breaking and the associated weakening of the Pauli pair-breaking effect. Since the degree of thickness modulation is a design feature of this type of superlattices, the Rashba interaction and the nature of pair-breaking are largely tunable in these modulated superlattices with strong spin-orbit coupling.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let

    Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a single institution over a 10-year period

    Get PDF
    The molecular epidemiology and mechanisms of resistance of carbapenem-resistant Acinetobacter baumannii (CRAB) were determined in hospitals in the states of the Cooperation Council for the Arab States of the Gulf (Gulf Cooperation Council [GCC]), namely, Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait. Isolates were subjected to PCR-based detection of antibiotic resistance genes and repetitive sequence-based PCR (rep-PCR) assessments of clonality. Selected isolates were subjected to multilocus sequence typing (MLST). We investigated 117 isolates resistant to carbapenem antibiotics (either imipenem or meropenem). All isolates were positive for OXA-51. The most common carbapenemases were the OXA-23-type, found in 107 isolates, followed by OXA-40-type (OXA-24-type), found in 5 isolates; 3 isolates carried the ISAba1 element upstream of blaOXA-51-type. No OXA-58-type, NDM-type, VIM-type, or IMP-type producers were detected. Multiple clones were detected with 16 clusters of clonally related CRAB. Some clusters involved hospitals in different states. MLST analysis of 15 representative isolates from different clusters identified seven different sequence types (ST195, ST208, ST229, ST436, ST450, ST452, and ST499), as well as three novel STs. The vast majority (84%) of the isolates in this study were associated with health care exposure. Awareness of multidrug-resistant organisms in GCC states has important implications for optimizing infection control practices; establishing antimicrobial stewardship programs within hospital, community, and agricultural settings; and emphasizing the need for establishing regional active surveillance systems. This will help to control the spread of CRAB in the Middle East and in hospitals accommodating transferred patients from this region
    corecore