235 research outputs found

    The Role of Natural Products in Targeting Cardiovascular Diseases via Nrf2 Pathway: Novel Molecular Mechanisms and Therapeutic Approaches

    Get PDF
    Cardiovascular diseases (CVDs) are closely linked to cellular oxidative stress and inflammation. This may be resulted from the imbalance generation of reactive oxygen species and its role in promoting inflammation, thereby contributing to endothelial dysfunction and cardiovascular complications. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a significant role in regulating expression of antioxidant and cytoprotective enzymes in response to oxidative stress. Natural products have emerged as a potential source of bioactive compounds which have shown to protect against atherogenesis development by activating Nrf2 signaling. This review aims to provide a comprehensive summary of the published data on the function, regulation and activation of Nrf2 as well as the molecular mechanisms of natural products in regulating Nrf2 signaling. The beneficial effects of using natural bioactive compounds as a promising therapeutic approach for the prevention and treatment of CVDs are reviewed

    (αR,4R,4aR,6aS,7R,8S,10R,11S)-Methyl α-acet­oxy-4-(3-furan­yl)-10-hy­droxy-4a,7,9,9-tetra­methyl-2,13-dioxo-1,4,4a,5,6,6a,7,8,9,10,11,12-dodeca­hydro-7,11-methano-2H-cyclo­octa­[f][2]benzopyran-8-acetate (6-O-acetyl­swietenolide) from the seeds of Swietenia macrophylla

    Get PDF
    The mol­ecule of O-acetyl­swietenolide, C29H36O9, isolated from the seeds of Swietenia macrophylla, features four six-membered rings connected together in the shape of a bowl; one of the inner rings adopts a twisted chair conformation owing to the C=C double bond. The furyl substitutent is connected to an outer ring, and it points away from the bowl cavity. The hy­droxy group is connected to a carbonyl O atom of an adjacent mol­ecule by an O—H⋯O hydrogen bond, generating a chain running along the b axis

    Gynura procumbens: An Overview of the Biological Activities

    Get PDF
    Gynura procumbens (Lour.) Merr. (Family Asteraceae) is a medicinal plant commonly found in tropical Asia countries such as China, Thailand, Indonesia, Malaysia and Vietnam. Traditionally, it is widely used in many different countries for the treatment of a wide variety of health ailments such as kidney discomfort, rheumatism, diabetes mellitus, constipation and hypertension. Based on the traditional uses of G. procumbens, it seems to possess high therapeutic potential for treatment of various diseases making it a target for pharmacological studies aiming to validate and provide scientific evidence for the traditional claims of its efficacy. Although there has been considerable progress in the research on G. procumbens, to date there is no review paper gathering the reported biological activities of G. procumbens. Hence, this review aims to provide an overview of the biological activities of G. procumbens based on reported in vitro and in vivo studies. In brief, G. procumbens has been reported to exhibit antihypertensive, cardioprotective, antihyperglycemic, fertility enhancement, anticancer, antimicrobial, antioxidant, organ protective and antiinflammatory activity. The commercial applications of G. procumbens have also been summarized in this paper based on existing patents. The data compiled illustrate that G. procumbens is a potential natural source of compounds with various pharmacological actions which can be utilised for the development of novel therapeutic agents

    Editorial : novel approaches to the treatment of multidrug-resistant bacteria, Volume II

    Get PDF
    No abstract available.http://www.frontiersin.org/Pharmacologyam2023Paraclinical Science

    Editorial : Novel approaches to the treatment of multidrug-resistant bacteria

    Get PDF
    No abstract available.https://www.frontiersin.org/journals/pharmacologydm2022Paraclinical Science

    Microalgae as potential anti-inflammatory natural products against human inflammatory skin diseases

    Get PDF
    The skin is the first line of defense against pathogen and other environmental pollutant. The body is constantly exposed to reactive oxygen species (ROS) that stimulates inflammatory process in the skin. Many studies have linked ROS to various inflammatory skin diseases. Patients with skin diseases face various challenges with inefficient and inappropriate treatment in managing skin diseases. Overproduction of ROS in the body will result in oxidative stress which will lead to various cellular damage and alter normal cell function. Multiple signaling pathways are seen to have significant effects during ROS-mediated oxidative stress. In this review, microalgae have been selected as a source of natural-derived antioxidant to combat inflammatory skin diseases that are prominent in today's society. Several studies have demonstrated that bioactive compounds isolated from microalgae have anti-inflammation and anti-oxidative properties that can help remedy various skin diseases. These compounds are able to inhibit production of pro-inflammatory cytokines and reduce the expression of inflammatory genes. Bioactive compounds from microalgae work in action by altering enzyme activities, regulating cellular activities, targeting major signaling pathways related to inflammation

    Pharmacological Effects of Grifolin: Focusing on Anticancer Mechanisms

    Get PDF
    Grifolin is a volatile compound contained in essential oils of several medicinal plants. Several studies show that this substance has been the subject of numerous pharmacological investigations, which have yielded interesting results. Grifolin demonstrated beneficial effects for health via its multiple pharmacological activities. It has anti-microbial properties against bacteria, fungi, and parasites. In addition, grifolin exhibited remarkable anti-cancer effects on different human cancer cells. The anticancer action of this molecule is related to its ability to act at cellular and molecular levels on different checkpoints controlling the signaling pathways of human cancer cell lines. Grifolin can induce apoptosis, cell cycle arrest, autophagy, and senescence in these cells. Despite its major pharmacological properties, grifolin has only been investigated in vitro and in vivo. Therefore, further investigations concerning pharmacodynamic and pharmacokinetic tests are required for any possible pharmaceutical application of this substance. Moreover, toxicological tests and other investigations involving humans as a study model are required to validate the safety and clinical applications of grifolin

    Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov.

    Get PDF
    A novel Streptomyces, strain MUSC 149T was isolated from mangrove soil. A polyphasic approach was used to study the taxonomy of MUSC 149T, which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The diamino acid of the cell wall peptidoglycan was LL-diaminopimelic acid. The predominant menaquinones were identified as MK9(H8) and MK9(H6). Phylogenetic analysis indicated that closely related strains include Streptomyces rhizophilus NBRC 108885T (99.2 % sequence similarity), Streptomyces gramineus NBRC 107863T (98.7 %) and Streptomyces graminisoli NBRC 108883T (98.5 %). The DNA–DNA relatedness values between MUSC 149T and closely related type strains ranged from 12.4 ± 3.3 % to 27.3 ± 1.9 %. The DNA G + C content was determined to be 72.7 mol%. The extract of MUSC 149T exhibited strong antioxidant activity and chemical analysis reported identification of an antioxidant agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-. These data showed that metabolites of MUSC 149T shall be useful as preventive agent against free-radical associated diseases. Based on the polyphasic study of MUSC 149T, the strain merits assignment to a novel species, for which the name Streptomyces mangrovisoli sp. nov. is proposed. The type strain is MUSC 149T (= MCCC 1K00699T = DSM 100438T)

    Vibrio vulnificus: An Environmental and Clinical Burden

    Get PDF
    Vibrio vulnificus is a Gram negative, rod shaped bacterium that belongs to the family Vibrionaceae. It is a deadly, opportunistic human pathogen which is responsible for the majority of seafood-associated deaths worldwide. V. vulnificus infection can be fatal as it may cause severe wound infections potentially requiring amputation or lead to sepsis in susceptible individuals. Treatment is increasingly challenging as V. vulnificus has begun to develop resistance against certain antibiotics due to their indiscriminate use. This article aims to provide insight into the antibiotic resistance of V. vulnificus in different parts of the world as well as an overall review of its clinical manifestations, treatment, and prevention. Understanding the organism's antibiotic resistance profile is vital in order to select appropriate treatment and initiate appropriate prevention measures to treat and control V. vulnificus infections, which should eventually help lower the mortality rate associated with this pathogen worldwide
    corecore