449 research outputs found

    Correlation functions of one-dimensional Bose-Fermi mixtures

    Get PDF
    We calculate the asymptotic behaviour of correlation functions as a function of the microscopic parameters for a Bose-Fermi mixture with repulsive interaction in one dimension. For two cases, namely polarized and unpolarized fermions the singularities of the momentum distribution functions are characterized as a function of the coupling constant and the relative density of bosons.Comment: RevTeX 4, 10 pages, 2 figure

    String order and adiabatic continuity of Haldane chains and band insulators

    Full text link
    The ground state of spin-1 Haldane chains is characterized by the so-called string order. We show that the same hidden order is also present in ordinary one-dimensional band insulators. We construct a family of Hamiltonians which connects adiabatically band insulators to two topologically non-equivalent spin models, the Haldane chain and the antiferromagnetic spin-1/2 ladder. We observe that the localized spin-1/2 edge-state characteristic of spin-1 chains is smoothly connected to a surface-bound state of band insulators and its emergence is not related to any bulk phase transition. Furthermore, we show that the string order is absent in any dimensions higher than one.Comment: 6 pages, 7 figures. Appendix about charge string orders added. Version as publishe

    Dissipation-driven quantum phase transitions in a Tomonaga-Luttinger liquid electrostatically coupled to a metallic gate

    Full text link
    The dissipation induced by a metallic gate on the low-energy properties of interacting 1D electron liquids is studied. As function of the distance to the gate, or the electron density in the wire, the system undergoes a quantum phase transition from the Tomonaga-Luttinger liquid state to two kinds of dissipative phases, one of them with a finite spatial correlation length. We also define a dual model, which describes an attractive one dimensional metal with a Josephson coupling to a dirty metallic lead.Comment: 5 pages, 2 EPS figures; v2: improved figure for phase diagram, added discussion, corrected typo

    Threshold Singularities in the One Dimensional Hubbard Model

    Full text link
    We consider excitations with the quantum numbers of a hole in the one dimensional Hubbard model below half-filling. We calculate the finite-size corrections to the energy. The results are then used to determine threshold singularities in the single-particle Green's function for commensurate fillings. We present the analogous results for the Yang-Gaudin model (electron gas with delta-function interactions).Comment: 26 pages, 12 figures version to appear in Phys Rev

    Electro-spinon in one-dimensional Mott insulator

    Full text link
    The low-energy dynamical optical response of dimerized and undimerized spin liquid states in a one-dimensional charge transfer Mott insulator is theoretically studied. An exact analysis is given for the low-energy asymptotic behavior using conformal field theory for the undimerized state. In the dimerized state, the infrared absorption due to the bound state of two solitons, i.e, the breather mode, is predicted with an accurate estimate for its oscillator strength, offering a way to detect experimentally the excited singlet state. Effects of external magnetic fields are also discussed.Comment: 5 pages, 2 figures, some typos are correcte

    Susceptibility at the edge points of magnetization plateau of 1D electron/spin systems

    Full text link
    We study the behavior of magnetization curve as a function of magnetic field in the immediate vicinity of the magnetization plateaus of 1D electron systems within the bosonization formalism. First we discuss the plateau that is formed at the saturation magnetization of 1D electron system. Interactions between electrons we treat in the lowest order of perturbation. We show that for isolated systems, where total number of electrons is not allowed to vary, magnetic susceptibility stays always finite away of half filling. Similar statement holds for many other magnetization plateaus supporting nonmagnetic gapless excitations encountered in 1D electron/spin systems in the absence of special symmetries or features responsible for the mode decoupling. We demonstrate it on example of the plateaus at irrational values of magnetization in doped modulated Hubbard chains. Finally we discuss the connection between the weak coupling description of saturation magnetization plateau and strong coupling description of zero magnetization plateau of attractively interacting electrons/ antiferromagnetically interacting spin 1 Bosons.Comment: 10 pages, 3 figures. To appear in Phys. Rev.

    Anderson-like impurity in the one-dimensional t-J model: formation of local states and magnetic behaviour

    Get PDF
    We consider an integrable model describing an Anderson-like impurity coupled to an open tt--JJ chain. Both the hybridization (i.e. its coupling to bulk chain) and the local spectrum can be controlled without breaking the integrability of the model. As the hybridization is varied, holon and spinon bound states appear in the many body ground state. Based on the exact solution we study the state of the impurity and its contribution to thermodynamic quantities as a function of an applied magnetic field. Kondo behaviour in the magnetic response of the impurity can be observed provided that its parameters have been adjusted properly to the energy scales of the holon and spinon excitations of the one-dimensional bulk.Comment: 32 pages, 11 figure

    Fragility of String Orders

    Full text link
    One-dimensional gapped systems are often characterized by a 'hidden' non-local order parameter, the so-called string order. Due to the gap, thermodynamic properties are robust against a weak higher-dimensional coupling between such chains or ladders. To the contrary, we find that the string order is not stable and decays for arbitrary weak inter-chain or inter-ladder coupling. We investigate the vanishing of the order for three different systems: spin-one Haldane chains, band insulators, and the transverse-field Ising model. Using perturbation theory and bosonization, we show that the fragility of the string order arises from non-local commutation relations between the non-local order parameter and the perturbation.Comment: 7 pages, 3 figures. Published versio

    Spin gap and string order parameter in the ferromagnetic Spiral Staircase Heisenberg Ladder: a quantum Monte Carlo study

    Full text link
    We consider a spin-1/2 ladder with a ferromagnetic rung coupling J_\perp and inequivalent chains. This model is obtained by a twist (\theta) deformation of the ladder and interpolates between the isotropic ladder (\theta=0) and the SU(2) ferromagnetic Kondo necklace model (\theta=\pi). We show that the ground state in the (\theta,J_\perp) plane has a finite string order parameter characterising the Haldane phase. Twisting the chain introduces a new energy scale, which we interpret in terms of a Suhl-Nakamura interaction. As a consequence we observe a crossover in the scaling of the spin gap at weak coupling from \Delta/J_\| \propto J_\perp/J_\| for \theta < \theta_c \simeq 8\pi/9 to \Delta/J_\| \propto (J_\perp/J_\|)^2 for \theta > \theta_c. Those results are obtained on the basis of large scale Quantum Monte Carlo calculations.Comment: 4 page

    The Mott metal-insulator transition in the 1D Hubbard model in an external magnetic field

    Full text link
    We study the low energy behavior of the one dimensional Hubbard model across the Mott metal-insulator phase transition in an external magnetic field. In particular we calculate elements of the dressed charge matrix at the critical point of the Mott transition for arbitrary Hubbard repulsion and magnetization numerically and, in certain limiting cases, analytically. These results are combined with a non-perturbative effective field theory approach to reveal how the breaking of time reversal symmetry influences the Mott transition.Comment: 12 pages, 1 figur
    corecore