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We calculate the asymptotic behavior of correlators as a function of the microscopic parameters for an
integrable Bose-Fermi mixture with repulsive interaction in one dimension. For two cases, namely polarized
and unpolarized fermions the singularities of the momentum distribution functions are characterized as a
function of the coupling constant and the relative density of bosons.
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In the past years, the advances in cooling and trapping of
atomic gases have opened the possibility to realize quasi-
one-dimensional �1D� systems with tunable strength of the
interactions in optical lattices. This gives rise to opportuni-
ties for the investigation of the striking phenomena appear-
ing in correlated systems as a consequence of the enhanced
quantum fluctuations in reduced spatial dimensions. The ob-
servable signatures of these phenomena are encoded in the
correlation functions of the system such as the momentum
distribution function which can be measured directly in time-
of-flight experiments or using Bragg spectroscopy �1�. A
setup for the measurement of various density correlation
functions has been proposed for the identification of domi-
nant correlations in the atomic gas �2�. Theoretical studies of
correlation functions in cold atomic gases have been per-
formed both using analytical methods, e.g., bosonization �3�
combined with exact results from integrable models such as
the Bose gas with repulsive �-function interaction �4�, and
numerically. Additional correlation effects appear when the
particles considered have internal degrees of freedom. In
cold gases containing different constituent atoms Bose-Fermi
mixtures can be realized �5�. Extensive theoretical results
exist for 1D Fermi gases due to their equivalence with the
Tomonaga-Luttinger �TL� liquids realized by correlated elec-
trons in 1D lattices �3,6�. Only recently, theoretical investi-
gations have been extended to Bose-Fermi mixtures: some
correlation functions have been calculated numerically in the
strong coupling limit �7,8� where the problem simplifies due
to the factorization of the many-particle wave function �see,
e.g., �9��. For analytical results on these systems one has to
go beyond mean-field approximations and use methods
which can capture the strong quantum fluctuations in 1D
systems. The phase diagram and certain correlation functions
of atomic mixtures have been studied in the Luttinger liquid
picture �10,11�. Without further input, however, these results
are limited to the weakly interacting regime since the TL
parameters which determine the low-energy theory cannot
easily be related to the microscopic parameters describing
the underlying gas. Therefore, instabilities predicted within
this approach may not appear in a specific realization
�7,12,13�.

In this paper we establish the relation between the TL and
the microscopic parameters for an integrable Bose-Fermi
mixture �12�. We employ methods from conformal quantum
field theory �CFT� to determine the asymptotic �long-
distance, low-energy� behavior of correlation functions in the

model from a finite size scaling analysis of the exact spec-
trum obtained by means of the Bethe ansatz. This approach
gives the complete set of critical exponents of the model as a
function of the parameters in the microscopic Hamiltonian
�see, e.g., �6,14,15� for applications to 1D correlated elec-
trons�. As an application we compute the momentum distri-
bution function of bosons and fermions in the atomic mixture
as a function of their respective densities and the effective
coupling constant. It should be emphasized that our results
can be expected to describe the generic �universal� low-
energy behavior of atomic mixtures. Additional
interactions—as long as they do not lead to a phase
transition—will merely change the anomalous exponents but
not the qualitative behavior of the correlation functions.

The 1D Bose-Fermi mixture of N=Mf +Mb particles with
repulsive interaction �c�0� on a line of length L subject to
periodic boundary conditions is described by the integrable
Hamiltonian �12�

H = − �
i=1

N
�2

�xi
2 + 2c�

i�k

��xi − xk� . �1�

Here Mf =M↑+M↓ of the particles are fermions carrying spin
�= ↑ ,↓ and Mb of them are bosons. Note that fixing the
particle numbers breaks the apparent symmetry of the
Hamiltonian arising from the equality of the particles’
masses and their mutual interactions. The many-particle
eigenstates of �1� are parametrized by the solutions of the
Bethe ansatz equations �BAE� �12�

exp�iqj
�0�L� = �

k=1

M1

ec�qj
�0� − qk

�1�� ,

�
j=1

M0

ec�qk
�1� − qj

�0���
�=1

M2

ec�qk
�1� − q�

�2�� = �
k��k

M1

e2c�qk
�1� − qk�

�1�� ,

�
k=1

M1

ec�q�
�2� − qk

�1�� = 1, �2�

where ea�x�= �x+ ia /2� / �x− ia /2� and M0=N, M1=N−M↑,
M2=Mb. The corresponding eigenvalue of �1� is E
=� j=1

N �qj
�0��2. In the thermodynamic limit L→� with Mi /L

kept fixed, the root configurations �q�i�� of Eqs. �2� can be
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described by distribution functions �i which, as a conse-
quence of �2� are solutions to �12�

�i�x� = �i
�0� + �

j

�K̂ij � � j��x� . �3�

Here �i
�0�= �c /2���i0 and K̂ij are linear integral operators act-

ing as �	 j 
	−Qj

Qj dy�

�K̂ij � f��x� = �
j

kij�x − y�f�y� . �4�

The kernels of these integral operators are kij�x�
=a1�x���i−j�,1−a2�x��i,1� j,1 where 2�an�x�=4n / �4x2+n2�.
The properties of the system are completely characterized by
the densities mi
Mi /L=	i�

�i��x� of the components of the
mixture �these relations determine the boundaries Qi of the
above integral equations� and the dimensionless coupling
strength �=Lc /N. For later use we also introduce the frac-
tion of bosons in the system 	=Mb /N.

Generically, i.e., for mi�0, there are three modes of col-
lective elementary excitations above the many-particle
ground state of �1�. Their dispersion 
i�k� is linear at low
energies with different sound velocities vi=�
i /�k, i=0,1 ,2
�13�. These quantities determine the finite size scaling behav-
ior of the ground-state energy

E0 − L
� = −
�

6L
�

i
vi + o 1

L
� . �5�

Physical excitations of the system are combinations of the
elementary ones. Due to the interacting nature of the system
the different modes are coupled and excitations in one of the
modes shift the energies in the other ones. In general, this
effect can be described in terms of generalized susceptibili-
ties which may be determined in an experiment or numeri-
cally from studies of small systems �6�. For the Bethe ansatz
solvable models it is possible to describe the coupling of the
modes in terms of the dressed charge matrix �16� which in
this case reads

Zij = �ij�Qi� . �6�

The functions �ij are given in terms of integral equations

�ij�x�=�ij +�k�K̂ik � �kj��x�.
Z determines the general form of the finite size correc-

tions to the energies of low-lying excitations

�E��M,D� =
2�

L 1

4
�MT�ZT�−1VZ−1�M + DTZVZTD

+ �
k

vk�Nk
+ + Nk

−�� + o 1

L
� . �7�

Here, V=diag�v0 ,v1 ,v2� is a 33 matrix of the sound ve-
locities, Nk

± are nonnegative integers, �M is a vector of inte-
gers denoting the change of Mi with respect to the ground
state for charged excitations. The Di are integers or half-odd
integers according to

D0 � ��M0 + �M1�/2 = �M↑/2 mod 1,

D1 � ��M0 + �M2�/2 = �Mf/2 mod 1,

D2 � ��M1 + �M2�/2 = �M↓/2 mod 1, �8�

and enumerate finite momentum transfer processes,

�P�� M,D� =
2�

L �MT · D + �
k

�Nk
+ − Nk

−�� + 2kF,↑D0

+ 2kF,↓�D0 + D1� + 2kB�
j

Dj . �9�

Here kF,�=�M� /L are the Fermi momenta of the fermion
components, kB=�Mb /L is the corresponding quantity for
the interacting bosons.

In the framework of CFT �17� the finite size spectrum �5�
and �7� can be understood as that of a critical theory based on
the product of three Virasoro algebras each having central
charge C=1 �6,14�. Correlation functions of a general opera-
tor in the theory—characterized by the quantum numbers
�Mi and Di—will contain contributions from these three sec-
tors. The simplest ones, analogues of primary fields in the
CFT, have correlation functions �in Euclidean time ��

����x,�����0,0��

=
exp�2iD0kF,↑x + 2i�D0 + D1�kF,↓x + 2i�� j

Dj�kBx�

�k
�vk� + ix�2�k

+
�vk� − ix�2�k

− .

�10�

The operators �� are characterized by their scaling dimen-
sions �k

± in the chiral �left and right moving� components of
all three constituent theories. The latter are uniquely deter-
mined from the finite size energies �7� and momenta �9� and
form towers starting at

2�k
± = �

j

ZkjDj ±
1

2�
j

�Mj�Z−1� jk�2

. �11�

The asymptotic exponential decay of correlation functions in
a large but finite system or at finite temperature T can be
obtained from �10� by conformal invariance. For example, at
T�0 the denominators in �10� have to be replaced by

�vk�± ix�−2�k
±
→ ��T /vk sin �T��± ix /vk��2�k

±
.

With �11� the critical exponents which determine the
long-distance asymptotics of any correlation function are
known as soon as we have computed the dressed charge
matrix �6�. To calculate the correlation functions of a given
local operator O in the microscopic theory �1� one needs to
know its expansion in terms of the fields �� of the CFT.
Usually, this expansion is not known but O and �� have to
generate the same set of selection rules in calculating the
correlation function. This drastically reduces the number of
possible terms in the expansion: As an example consider the
bosonic Green’s function Gb�x ,��= ��b�x ,���b

†�0,0��:
clearly �b

† generates a state with �Mb=1 which implies
�Mj 
1 in �11�. By �8� the quantum numbers Dj are further
restricted to integers: the uniform part of the Gb�x�
��x�−1/2Kb is described by the operator with Dj 
0 which
allows to identify the TL parameter Kb �18� from �11�. The
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interactions lead to additional contributions to Gb oscillating
with wave numbers k0=2kF� ,2kB , . . ..

For a comparison with experimental data one is often in-
terested in Fourier transforms of the two-point correlation
functions given above. The large distance behavior of �10�
determines the singularities of spectral functions near �
� ±vk�k−k0� �see, e.g., �6��. Quantities accessible in experi-
ments with cold gases �1� are the momentum distribution
functions of the constituent particles. For the bosons this is
the Fourier transform of the equal time Green’s function
Gb�x�. From �10� its singularities at wave numbers k0 are
then nb�k���k−k0��b near k�k0. The exponent �b is the
minimal value of 2�k��k

++�k
−�−1 compatible with the quan-

tum numbers �M and the selection rules for the D for the
given k0, e.g., 1 /2Kb=�b+1=1/4�k�� j�Zjk

−1��2 for k0=0.
Using the same procedure for the fermionic Green’s func-

tion G��x ,��= ����x ,����
†�0,0�� we find that their

asymptotic behavior is determined by the conformal fields
with �M0=1, �M1=�M2=0, half-odd integers D0, D1, and
integer D2 for G↑ and �M0=1=�M1, �M2=0, half-odd in-
tegers D1, D2, and integer D0 for G↓. Again, the singularities
of the fermions’ distribution functions n��k� follow from
�10�. Near k0−kF�=0, ±2kB , . . . they are given by

n��k� � sgn�k − k0��k − k0��f for k � k0. �12�

� f is related to the dimensions �11� for the quantum numbers
�M and D as �b above. The Fermi distribution of noninter-
acting particles corresponds to � f�kF��=0.

In the following we consider two cases of particular rel-
evance �11–13�, namely �i� the unpolarized case where M↑
=M↓=Mf /2 and the ground state of the system is invariant
under rotations in the spin index of the fermions and �ii� the
fully polarized case where there is only one spin component
of the fermions.

The unpolarized gas. For Q1=� one obtains M↑=M↓
from �3�, i.e., with vanishing net magnetization. In this case
the dressed charge matrix �6� takes the form

Z =
1

2�2�00 ��00 + �01� 2�01

0 �2 0

2�10 ��10 + �11� 2�11
� . �13�

Here the Wiener-Hopf method has been used to determine
Z11=1/�2 and �0j =�0j�Q0�, �1j =�1j�Q2�. The functions �ij�x�
are given by

�ij�x� = �ij + �
0

R�x − y��0j�y� + �
2

R�x − y��1j�y� �14�

with R�x�= �1/��	0
�d�e−���/2 cos��x� / cosh�� /2�. Using Eq.

�13� the scaling dimensions �1
± in Eq. �11� are independent

on the remaining system parameters, i.e., the effective cou-
pling � and the bosonic fraction 	. This a consequence of the
SU�2� invariance of the system in this case. The mode 
1�k�
is the spinon mode of the unpolarized system, the CFT de-
scribing its low-energy properties is an �SU�2��1 Wess-
Zumino-Witten model.

Additional simplifications arise in the strong coupling
limit �→� �i.e., Q0→0� where �00=1, �10=0, �01=�11�0�

−1=	 and �11�x� is given by a scalar integral equation re-
sulting from �14�. In Fig. 1 we present results obtained from
the numerical solution of these integral equations for the
exponents which determine the singularities of the momen-
tum distribution functions for bosons at k=0 and fermions at
k=kF as a function of the bosonic fraction 	 for various
values of �. The exponents �b,f at the other wave numbers
are always larger than 1. Note that the system is in a different
universality class for 	=0 or 1. At 	=0, all particles are
fermionic and the critical exponents are those of the 1D
Fermi gas �6�. Here the exponent � f for the singularity at the
Fermi point varies between 0 and 1/8 as a function of �. On
the other hand, the limit of �b as 	→1 gives exactly the
exponent of the 1D Bose gas with � interaction �18�.

The spin-polarized gas. Setting Q2=� in �3� corresponds
to M↓=0. This case has been discussed recently in Ref. �7�
where some correlation functions have been computed nu-
merically in the strong coupling limit. In this case, the finite
size spectrum and the scaling dimensions are determined by
two gapless modes. Again, the equations simplify in the
strong coupling limit where all exponents can be given as a
function of 	 directly, e.g., �b�0�=	2 /2−	 and � f�kF�=	2

−	+1/2 for the dominant singularities of the bosonic and
fermionic momentum distribution functions, respectively
�see Fig. 2 for the � dependence�. While the dependence of
�b on 	 is similar to the one found in the unpolarized case,
the strong coupling behavior of � f at a small bosonic fraction
is seen to be very different. Note that the singularity at kF
+2kB becomes very pronounced for sufficiently small 	 �� f

FIG. 1. Exponents characterizing the singularities in the bosonic
�upper panel� and fermionic �lower panel� momentum distribution
function for the unpolarized gas at k=0 and kF, respectively, as a
function of the bosonic fraction 	 in the mixture for �
=0.2,1.0,5.0,25.0,� �bottom to top�.
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=	2+	+1/2 at strong coupling�. This feature of the fermi-
onic distribution function is a direct signature of the interac-
tion and should be observable in experiments.

In summary we have used predictions from CFT on

the finite size scaling of the low-energy spectrum to study
the critical properties of a 1D Bose-Fermi mixture.
Generically—not limited to the integrable model �1� consid-
ered in this Rapid Communication—the low-energy effective
theory of such systems and therefore the asymptotic behavior
of its correlation functions is determined by three linearly
dispersing modes. Combined with the exact solution of �1�
this approach allows to relate the critical exponents directly
to the parameters in the microscopic Hamiltonian, i.e., the
coupling strength, the fraction of bosons and polarization of
the fermions. For two special cases we have studied this
relation for the momentum distribution functions and ob-
tained simplified expressions valid in the strong coupling
limit. These quantitative predictions indicate how to tune the
parameters of a given system for enhanced signatures of in-
teraction which can be detected in experiments such as �1�.

Our approach opens new possibilities to investigate the
phase diagram of the 1D mixture by identifying the order
parameter with the slowest long-distance decay of its corre-
lation functions �smallest exponent� �10,11�. Within the inte-
grable model �1� there is no instability leading to a phase
transition �12,13�. We emphasize, however, that our expres-
sion �11� for the exponents is valid in more general systems
�with different coupling constants or longer-ranged interac-
tion� and therefore allows for the study of the phase diagram
based, e.g., on numerical data on the spectrum of finite
systems.
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FIG. 2. Same as Fig. 1 for a mixture with polarized fermions.
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