2,032 research outputs found

    Correlated transport and non-Fermi liquid behavior in single-wall carbon nanotubes

    Full text link
    We derive the effective low-energy theory for single-wall carbon nanotubes including the Coulomb interactions among electrons. The generic model found here consists of two spin-1/2 fermion chains which are coupled by the interaction. We analyze the theory using bosonization, renormalization-group techniques, and Majorana refermionization. Several experimentally relevant consequences of the breakdown of Fermi liquid theory observed here are discussed in detail, e.g., magnetic instabilities, anomalous conductance laws, and impurity screening profiles.Comment: 23 pages REVTeX, incl 5 figs, to appear in Europ.Phys.Journal

    Electron-electron and spin-orbit interactions in armchair graphene ribbons

    Full text link
    The effects of intrinsic spin-orbit and Coulomb interactions on low-energy properties of finite width graphene armchair ribbons are studied by means of a Dirac Hamiltonian. It is shown that metallic states subsist in the presence of intrinsic spin-orbit interactions as spin-filtered edge states, in contrast with the insulating behavior predicted for graphene planes. A charge-gap opens due to Coulomb interactions in neutral ribbons, that vanishes as Δ1/W\Delta\sim 1/W , with a gapless spin sector. Weak intrinsic spin-orbit interactions do not change the insulating behavior. Explicit expressions for the width-dependent gap and various correlation functions are presented.Comment: Will appear in PR

    Comment on ``Enhancement of the Tunneling Density of States in Tomonaga-Luttinger Liquids''

    Full text link
    In a recent Physical Review Letter, Oreg and Finkel'stein (OF) have calculated the electron density of states (DOS) for tunneling into a repulsive Luttinger liquid close to the location of an impurity. The result of their calculation is a DOS which is enhanced with respect to the pure system, and moreover diverging for not too strong repulsion. In this Comment we intend to show that OF's calculation suffers from a subtle flaw which, being corrected, results into a DOS not only vanishing at zero frequency but in fact suppressed in comparison with the DOS of a pure Luttinger liquid.Comment: 1 page, Revte

    Lieb-Robinson bounds and the simulation of time evolution of local observables in lattice systems

    Full text link
    This is an introductory text reviewing Lieb-Robinson bounds for open and closed quantum many-body systems. We introduce the Heisenberg picture for time-dependent local Liouvillians and state a Lieb-Robinson bound that gives rise to a maximum speed of propagation of correlations in many body systems of locally interacting spins and fermions. Finally, we discuss a number of important consequences concerning the simulation of time evolution and properties of ground states and stationary states.Comment: 13 pages, 2 figures; book chapte

    Avian Malaria Among House Sparrows: a Survey of Disease and Mosquito Vectors (Diptera: Culicidae) in Reed City, Michigan

    Get PDF
    Nine of 350 house sparrows caught in Reed City, Michigan, had malaria parasites detectable on Giemsa-stained thin films. All of the infected birds were juveniles, Parasitemias were too low to permit identification of the Plasmodium present. Collection of potential vector mosquitoes showed that Culex pipiens and Culex restuans were present, but in low numbers

    Total correlations of the diagonal ensemble as a generic indicator for ergodicity breaking in quantum systems

    Full text link
    The diagonal ensemble is the infinite time average of a quantum state following unitary dynamics. In analogy to the time average of a classical phase space dynamics, it is intimately related to the ergodic properties of the quantum system giving information on the spreading of the initial state in the eigenstates of the Hamiltonian. In this work we apply a concept from quantum information, known as total correlations, to the diagonal ensemble. Forming an upper-bound on the multipartite entanglement, it quantifies the combination of both classical and quantum correlations in a mixed state. We generalize the total correlations of the diagonal ensemble to more general α\alpha-Renyi entropies and focus on the the cases α=1\alpha=1 and α=2\alpha=2 with further numerical extensions in mind. Here we show that the total correlations of the diagonal ensemble is a generic indicator of ergodicity breaking, displaying a sub-extensive behaviour when the system is ergodic. We demonstrate this by investigating its scaling in a range of spin chain models focusing not only on the cases of integrability breaking but also emphasize its role in understanding the transition from an ergodic to a many body localized phase in systems with disorder or quasi-periodicity.Comment: v3: several minor improvement
    corecore