research

Electron-electron and spin-orbit interactions in armchair graphene ribbons

Abstract

The effects of intrinsic spin-orbit and Coulomb interactions on low-energy properties of finite width graphene armchair ribbons are studied by means of a Dirac Hamiltonian. It is shown that metallic states subsist in the presence of intrinsic spin-orbit interactions as spin-filtered edge states, in contrast with the insulating behavior predicted for graphene planes. A charge-gap opens due to Coulomb interactions in neutral ribbons, that vanishes as Δ∼1/W\Delta\sim 1/W , with a gapless spin sector. Weak intrinsic spin-orbit interactions do not change the insulating behavior. Explicit expressions for the width-dependent gap and various correlation functions are presented.Comment: Will appear in PR

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020