18 research outputs found

    Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers

    Get PDF
    Ovarian carcinomas with mutations in the tumour suppressor BRCA2 are particularly sensitive to platinum compounds. However, such carcinomas ultimately develop cisplatin resistance. The mechanism of that resistance is largely unknown. Here we show that acquired resistance to cisplatin can be mediated by secondary intragenic mutations in BRCA2 that restore the wild-type BRCA2 reading frame. First, in a cisplatin-resistant BRCA2-mutated breast-cancer cell line, HCC1428, a secondary genetic change in BRCA2 rescued BRCA2 function. Second, cisplatin selection of a BRCA2-mutated pancreatic cancer cell line, Capan-1 (refs 3, 4), led to five different secondary mutations that restored the wild-type BRCA2 reading frame. All clones with secondary mutations were resistant both to cisplatin and to a poly(ADP-ribose) polymerase (PARP) inhibitor (AG14361). Finally, we evaluated recurrent cancers from patients whose primary BRCA2-mutated ovarian carcinomas were treated with cisplatin. The recurrent tumour that acquired cisplatin resistance had undergone reversion of its BRCA2 mutation. Our results suggest that secondary mutations that restore the wild-type BRCA2 reading frame may be a major clinical mediator of acquired resistance to platinum-based chemotherapy

    Induction by transforming growth factor-β1 of epithelial to mesenchymal transition is a rare event in vitro

    Get PDF
    INTRODUCTION: Transforming growth factor (TGF)-β1 is proposed to inhibit the growth of epithelial cells in early tumorigenesis, and to promote tumor cell motility and invasion in the later stages of carcinogenesis through the induction of an epithelial to mesenchymal transition (EMT). EMT is a multistep process that is characterized by changes in cell morphology and dissociation of cell–cell contacts. Although there is growing interest in TGF-β1-mediated EMT, the phenotype is limited to only a few murine cell lines and mouse models. METHODS: To identify alternative cell systems in which to study TGF-β1-induced EMT, 18 human and mouse established cell lines and cultures of two human primary epithelial cell types were screened for TGF-β1-induced EMT by analysis of cell morphology, and localization of zonula occludens-1, E-cadherin, and F-actin. Sensitivity to TGF-β1 was also determined by [(3)H]thymidine incorporation, flow cytometry, phosphorylation of Smad2, and total levels of Smad2 and Smad3 in these cell lines and in six additional cancer cell lines. RESULTS: TGF-β1 inhibited the growth of most nontransformed cells screened, but many of the cancer cell lines were insensitive to the growth inhibitory effects of TGF-β1. In contrast, TGF-β1 induced Smad2 phosphorylation in the majority of cell lines, including cell lines resistant to TGF-β1-mediated cell cycle arrest. Of the cell lines screened only two underwent TGF-β1-induced EMT. CONCLUSION: The results presented herein show that, although many cancer cell lines have lost sensitivity to the growth inhibitory effect of TGF-β1, most show evidence of TGF-β1 signal transduction, but only a few cell lines undergo TGF-β1-mediated EMT

    Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer

    Get PDF
    We performed a multistage genome-wide association study (GWAS) including 7,683 individuals with pancreatic cancer and 14,397 controls of European descent. Four new loci reached genome-wide significance: rs6971499 at 7q32.3 (LINC-PINT; per-allele odds ratio [OR] = 0.79; 95% confidence interval [CI] = 0.74–0.84; P = 3.0×10−12), rs7190458 at 16q23.1 (BCAR1/CTRB1/CTRB2; OR = 1.46; 95% CI = 1.30–1.65; P = 1.1×10−10), rs9581943 at 13q12.2 (PDX1; OR = 1.15; 95% CI = 1.10–1.20; P = 2.4×10−9), and rs16986825 at 22q12.1 (ZNRF3; OR = 1.18; 95% CI = 1.12–1.25; P = 1.2×10−8). An independent signal was identified in exon 2 of TERT at the established region 5p15.33 (rs2736098; OR = 0.80; 95% CI = 0.76–0.85; P = 9.8×10−14). We also identified a locus at 8q24.21 (rs1561927; P = 1.3×10−7) that approached genome-wide significance located 455 kb telomeric of PVT1. Our study has identified multiple new susceptibility alleles for pancreatic cancer worthy of follow-up studies

    Hypoxia and integrin-mediated epithelial restitution during mucosal inflammation

    Get PDF
    Epithelial damage and loss of intestinal barrier function are hallmark pathologies of the mucosal inflammation associated with conditions such as inflammatory bowel disease. In order to resolve inflammation and restore intestinal integrity the mucosa must rapidly and effectively repair the epithelial barrier. Epithelial wound healing is a highly complex and co-ordinated process and the factors involved in initiating intestinal epithelial healing are poorly defined. In order for restitution to be successful there must be a balance between epithelial cell migration, proliferation, and differentiation within and adjacent to the inflamed area. Endogenous, compensatory epithelial signaling pathways are activated by the changes in oxygen tensions that accompany inflammation. These signaling pathways induce the activation of key transcription factors, governing anti-apoptotic, and proliferative processes resulting in epithelial cell survival, proliferation, and differentiation at the site of mucosal inflammation. In this review, we will discuss the primary processes involved in epithelial restitution with a focus on the role of hypoxia-inducible factor and epithelial integrins as mediators of epithelial repair following inflammatory injury at the mucosal surface. © 2013 Goggins, Chaney, Radford-Smith, Horvat and Keely

    Pharmacological HIF-1 stabilization promotes intestinal epithelial healing through regulation of α-integrin expression and function.

    Full text link
    Intestinal epithelia are critical for maintaining gastrointestinal homeostasis. Epithelial barrier injury, causing inflammation and vascular damage, results in inflammatory hypoxia, and thus, healing occurs in an oxygen-restricted environment. The transcription factor hypoxia-inducible factor (HIF)-1 regulates genes important for cell survival and repair, including the cell adhesion protein β1-integrin. Integrins function as αβ-dimers, and α-integrin-matrix binding is critical for cell migration. We hypothesized that HIF-1 stabilization accelerates epithelial migration through integrin-dependent pathways. We aimed to examine functional and posttranslational activity of α-integrins during HIF-1-mediated intestinal epithelial healing. Wound healing was assessed in T84 monolayers over 24 h with/without prolyl-hydroxylase inhibitor (PHDi) (GB-004), which stabilizes HIF-1. Gene and protein expression were measured by RT-PCR and immunoblot, and α-integrin localization was assessed by immunofluorescence. α-integrin function was assessed by antibody-mediated blockade, and integrin α6 regulation was determined by HIF-1α chromatin immunoprecipitation. Models of mucosal wounding and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis were used to examine integrin expression and localization in vivo. PHDi treatment accelerated wound closure and migration within 12 h, associated with increased integrin α2 and α6 protein, but not α3. Functional blockade of integrins α2 and α6 inhibited PHDi-mediated accelerated wound closure. HIF-1 bound directly to the integrin α6 promoter. PHDi treatment accelerated mucosal healing, which was associated with increased α6 immunohistochemical staining in wound-associated epithelium and wound-adjacent tissue. PHDi treatment increased α6 protein levels in colonocytes of TNBS mice and induced α6 staining in regenerating crypts and reepithelialized inflammatory lesions. Together, these data demonstrate a role for HIF-1 in regulating both integrin α2 and α6 responses during intestinal epithelial healing.NEW & NOTEWORTHY HIF-1 plays an important role in epithelial restitution, selectively inducing integrins α6 and α2 to promote migration and proliferation, respectively. HIF-stabilizing prolyl-hydroxylase inhibitors accelerate intestinal mucosal healing by inducing epithelial integrin expression
    corecore