21 research outputs found

    Advanced Maternal Age and the Risk of Major Congenital Anomalies

    Get PDF
    Objective This study aims to determine if advanced maternal age (AMA) is a risk factor for major congenital anomalies, in the absence of aneuploidy. Study Design Retrospective cohort study of all patients with a singleton gestation presenting for second trimester anatomic survey over a 19-year study period. Aneuploid fetuses were excluded. Study groups were defined by maternal age ≤ 34 and ≥ 35 years. The primary outcome was the presence of one or more major anomalies diagnosed at the second trimester ultrasound. Univariable and multivariable logistic regression analyses were used to estimate the risk of major anomalies in AMA patients. Results Of 76,156 euploid fetuses, 2.4% (n = 1,804) were diagnosed with a major anomaly. There was a significant decrease in the incidence of major fetal anomalies with increasing maternal age until the threshold of age 35 (p < 0.001). Being AMA was significantly associated with an overall decreased risk for major fetal anomalies (adjusted odds ratio: 0.59, 95% confidence interval: 0.52–0.66). The subgroup analysis demonstrated similar results for women ≥ 40 years of age. Conclusion AMA is associated with an overall decreased risk for major anomalies. These findings may suggest that the “all or nothing” phenomenon plays a more robust role in embryonic development with advancing oocyte age, with anatomically normal fetuses being more likely to survive

    Digynic triploidy: Utility and challenges of noninvasive prenatal testing

    Get PDF
    Low fraction fetal DNA in noninvasive prenatal testing in the context of fetal growth restriction and multiple congenital anomalies should alert medical professionals to the possibility of digynic triploidy. Single-nucleotide polymorphism microarray can detect the parental origin of triploidy and explain its mechanism

    Efficiency of first-trimester uterine artery Doppler, A-disintegrin and metalloprotease 12, pregnancy-associated plasma protein A, and maternal characteristics in the prediction of preeclampsia

    Get PDF
    OBJECTIVE: To estimate the efficiency of first-trimester uterine artery Doppler, A-disintegrin and metalloprotease 12 (ADAM12), pregnancy-associated plasma protein A (PAPP-A) and maternal characteristics in the prediction of pre-eclampsia. METHODS: This is a prospective cohort study of patients presenting for first-trimester aneuploidy screening between 11-14 weeks’ gestation. Maternal serum ADAM12 and PAPP-A levels were measured by immunoassay, and mean uterine artery Doppler pulsatility indices (PI) were calculated. Outcomes of interest included pre-eclampsia, early pre-eclampsia, defined as requiring delivery at <34 weeks’ gestation, and gestational hypertension. Logistic regression analysis was used to model the prediction of pre-eclampsia using ADAM12 multiples of the median (MoM), PAPP-A MoM, and uterine artery Doppler PI MoM, either individually or in combination. Sensitivity, specificity, and area under the receiver-operating characteristic curves (AUC) were used to compare the screening efficiency of the models using non-parametric U-statistics. RESULTS: Of 578 patients with complete outcome data, there were 54 (9.3%) cases of preeclampsia and 13 (2.2%) cases of early pre-eclampsia. Median ADAM12 levels were significantly lower in patients who developed pre-eclampsia compared to those who did not. (0.81 v. 1.01 MoMs; p<0.04) For a fixed false positive rate (FPR) of 10%, ADAM12, PAPP-A, and uterine artery Doppler in combination with maternal characteristics identified 50%, 48%, and 52% of patients who developed pre-eclampsia, respectively. Combining these first-trimester parameters did not improve the predictive efficiency of the models. CONCLUSION: First-trimester ADAM12, PAPP-A, and uterine artery Doppler are not sufficiently predictive of pre-eclampsia. Combinations of these parameters do not further improve their screening efficiency

    Use of the Renal Artery Doppler to Identify Small for Gestational Age Fetuses at Risk for Adverse Neonatal Outcomes

    No full text
    Objective: To measure the sensitivity and positive predictive value (PPV) for an adverse neonatal outcome among growth-restricted fetuses (FGR) comparing the cerebral–placental ratio (CPR) with the cerebral–renal ratio (CRR). Methods: Retrospective analysis of 92 women who underwent prenatal ultrasound at the University of Maryland and the University of Padua. Renal, middle cerebral and umbilical artery Doppler waveforms were recorded for all scans during the third trimester. The last scan prior to delivery was included for analysis. We calculated the test characteristics of the pulsatility indices (PI) of the umbilical and renal arteries in addition to the derived CPR and CRR to detect a composite adverse neonatal outcome. Results: The test characteristics of the four Doppler ratios to detect increased risk for the composite neonatal outcome demonstrated that the umbilical artery pulsatility index had the best test performance (sensitivity 64% (95% CI: 47–82%), PPV 24% (95% CI: 21–27), and positive likelihood ratio 2.7 (95% CI: 1.4–5.2)). There was no benefit to using the CRR compared with the CPR. The agreement between tests was moderate to poor (Kappa value CPR compared with CRR: 0.5 (95%CI 0.4–0.70), renal artery PI:−0.1 (95% CI −0.2–0.0), umbilical artery PI: 0.5 (95% CI 0.4–0.7)). Only the umbilical artery had an area under the receiver operating curve that was significantly better compared with the CPR as a reference (p-value &lt; 0.01). Conclusions: The data that we present do not support the use of renal artery Doppler as a useful clinical test to identify a fetus at risk for an adverse neonatal outcome. Within the various indices applied to this population, umbilical artery Doppler performed the best in identifying the fetuses at risk for an adverse perinatal outcome
    corecore