23 research outputs found

    Potential role of endocrine gastrin in the colonic adenoma carcinoma sequence

    Get PDF
    The role of hyper-gastrinaemia in the incidence of colonic cancer remains to be clarified. The aim of this study was to determine whether cholecystokinin-2 (CCK-2) receptor expression predicts the sensitivity of human colonic adenomas to the proliferative effects of serum hyper-gastrinaemia. Gene expression of the classical (74 kDa) CCK-2 receptor in human colonic adenoma specimens and cell lines, was quantified by real-time PCR. Western blotting, using a CCK-2 receptor antiserum, confirmed protein expression. A transformed human colonic adenoma was grown in SCID mice, with hyper-gastrinaemia induced by protein pump inhibitors. CCK-2 receptor blockade was achieved by using neutralising antiserum. Both human colonic adenoma cell lines and biopsies expressed CCK-2 receptor mRNA at levels comparable with CCK-2 receptor transfected fibroblasts and oxyntic mucosa. Western blotting confirmed immunoreactive CCK-2 receptor bands localised to 45, 74 and 82.5 kDa. Omeprazole and lansoprazole-induced hyper-gastrinaemia (resulting in serum gastrin levels of 34.0 and 153.0 pM, respectively) significantly increased the weight of the human adenoma grafts (43% (P=0.016) and 70% (P=0.014), respectively). The effect of hypergastrinaemia on tumour growth was reversed by use of antiserum directed against the CCK-2 receptor. Hyper-gastrinaemia may promote proliferation of human colonic adenomas that express CCK-2 receptor isoforms

    An Assessment of Mobile Predator Populations along Shallow and Mesophotic Depth Gradients in the Hawaiian Archipelago.

    Get PDF
    Large-bodied coral reef roving predators (sharks, jacks, snappers) are largely considered to be depleted around human population centers. In the Hawaiian Archipelago, supporting evidence is primarily derived from underwater visual censuses in shallow waters (=30?m). However, while many roving predators are present or potentially more abundant in deeper strata (30-100?m+), distributional information remains sparse. To partially fill that knowledge gap, we conducted surveys in the remote Northwestern Hawaiian Islands (NWHI) and populated Main Hawaiian Islands (MHI) from 2012-2014 using baited remote underwater stereo-video. Surveys between 0-100?m found considerable roving predator community dissimilarities between regions, marked conspicuous changes in species abundances with increasing depth, and largely corroborated patterns documented during shallow water underwater visual censuses, with up to an order of magnitude more jacks and five times more sharks sampled in the NWHI compared to the MHI. Additionally, several species were significantly more abundant and larger in mesophotic versus shallow depths, which remains particularly suggestive of deep-water refugia effects in the MHI. Stereo-video extends the depth range of current roving predator surveys in a more robust manner than was previously available, and appears to be well-suited for large-scale roving predator work in the Hawaiian Archipelago

    Strategies for dissecting epigenetic mechanisms in the mouse

    No full text
    Epigenetics generally refers to heritable changes in gene expression that are independent of nucleotide sequence. With complete genome sequences in hand, understanding the epigenetic control of genomes is the next step towards comprehending how the same DNA sequence gives rise to different cells, lineages and organs. Epigenetics also contributes to individual variation in normal biology and in disease states. The mouse provides a unique opportunity to understand how epigenetic differences contribute to both development and disease in a tractable mammalian system. Here we discuss current approaches and protocols used to study epigenetics in the mouse, including loss-of-function studies, mutagenesis screens, somatic cell nuclear transfer, genomics and proteomics

    The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules

    Get PDF
    We developed a general approach that combines chromosome conformation capture carbon copy (5C) with the Integrated Modeling Platform (IMP) to generate high-resolution three-dimensional models of chromatin at the megabase scale. We applied this approach to the ENm008 domain on human chromosome 16, containing the α-globin locus, which is expressed in K562 cells and silenced in lymphoblastoid cells (GM12878). The models accurately reproduce the known looping interactions between the α-globin genes and their distal regulatory elements. Further, we find using our approach that the domain folds into a single globular conformation in GM12878 cells, whereas two globules are formed in K562 cells. The central cores of these globules are enriched for transcribed genes, whereas nontranscribed chromatin is more peripheral. We propose that globule formation represents a higher-order folding state related to clustering of transcribed genes around shared transcription machineries, as previously observed by microscopy
    corecore