10 research outputs found

    Expanding Adeno-Associated Viral Capsid Engineering to Multiple Variable Regions for Diversified Tropism

    Get PDF
    Adeno-associated virus research is critical for the advancement of gene therapy and treatment of myriad debilitating genetic disorders. Targeted delivery of genetic components to a tissue or cell population remains a bottleneck for gene therapy, but the selection of AAV capsids through directed evolution can yield vectors that target desired tissues or cells. This thesis details the engineering of the AAV capsid to acquire desired tropism, namely reduction in liver transduction or increased transduction of the lung. Chapter I chronicles the history of AAV engineering, provides useful information about the AAV capsid proteins, and describes how AAV has been engineered for altered tropism in works preceding this thesis. Chapter II describes the development of AAV9.452sub.LUNG1, an AAV variant that is enriched in the lung of mice after systemic injection. Chapter III details the engineering of variants with attenuated tropism in the liver while maintaining previously acquired brain transduction after systemic injection. Two of these variants, AAV.CAP-B10 and AAV.CAP-B22, display similar tropism in the marmoset after systemic injection. Chapter IV describes the parallel engineering of prominent variable regions of the AAV capsid. Overall, the work presented in this thesis expands the toolbox available for gene therapy and represents an advancement of methods for AAV capsid engineering.</p

    Broad gene expression throughout the mouse and marmoset brain after intravenous delivery of engineered AAV capsids

    Get PDF
    Genetic intervention is increasingly explored as a therapeutic option for debilitating disorders of the central nervous system. The safety and efficacy of gene therapies relies upon expressing a transgene in affected cells while minimizing off-target expression. To achieve organ/cell-type specific targeting after intravenous delivery of viral vectors, we employed a Cre-transgenic-based screening platform for fast and efficient capsid selection, paired with sequential engineering of multiple surface-exposed loops. We identified capsid variants that are enriched in the brain and detargeted from the liver in mice. The improved enrichment in the brain extends to non-human primates, enabling robust, non-invasive gene delivery to the marmoset brain following IV administration. Importantly, the capsids identified display non-overlapping cell-type tropisms within the brain, with one exhibiting high specificity to neurons. The ability to cross the blood–brain barrier with cell-type specificity in rodents and non-human primates enables new avenues for basic research and potential therapeutic interventions unattainable with naturally occurring serotypes

    Broad gene expression throughout the mouse and marmoset brain after intravenous delivery of engineered AAV capsids

    Get PDF
    Genetic intervention is increasingly explored as a therapeutic option for debilitating disorders of the central nervous system. The safety and efficacy of gene therapies relies upon expressing a transgene in affected cells while minimizing off-target expression. To achieve organ/cell-type specific targeting after intravenous delivery of viral vectors, we employed a Cre-transgenic-based screening platform for fast and efficient capsid selection, paired with sequential engineering of multiple surface-exposed loops. We identified capsid variants that are enriched in the brain and detargeted from the liver in mice. The improved enrichment in the brain extends to non-human primates, enabling robust, non-invasive gene delivery to the marmoset brain following IV administration. Importantly, the capsids identified display non-overlapping cell-type tropisms within the brain, with one exhibiting high specificity to neurons. The ability to cross the blood–brain barrier with cell-type specificity in rodents and non-human primates enables new avenues for basic research and potential therapeutic interventions unattainable with naturally occurring serotypes

    Adeno-Associated Virus Toolkit to Target Diverse Brain Cells

    Get PDF
    Recombinant adeno-associated viruses (AAVs) are commonly used gene delivery vehicles for neuroscience research. They have two engineerable features: the capsid (outer protein shell) and cargo (encapsulated genome). These features can be modified to enhance cell type or tissue tropism and control transgene expression, respectively. Several engineered AAV capsids with unique tropisms have been identified, including variants with enhanced central nervous system transduction, cell type specificity, and retrograde transport in neurons. Pairing these AAVs with modern gene regulatory elements and state-of-the-art reporter, sensor, and effector cargo enables highly specific transgene expression for anatomical and functional analyses of brain cells and circuits. Here, we discuss recent advances that provide a comprehensive (capsid and cargo) AAV toolkit for genetic access to molecularly defined brain cell types

    Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates

    Get PDF
    Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits

    Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates

    Full text link
    Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits

    AMS Food and Beverage : optimal modes of campus food delivery

    No full text
    The installation of the New Student Union Building (SUB) creates a vast opportunity for restaurants to take advantage of the food delivery system towards the students of UBC. Ryan Bissell, Executive Chef, and Collyn Chan, New SUB Sustainability Coordinator, have requested the students of APSC 262 to research and identify a vehicle capable of delivering multiple orders throughout campus. The vehicle needed to handle a specific amount of food in a given time period, while being sustainable and user friendly. The proposed vehicle for this project is the AX-A3 mini golf cart. The AX-A3 meets the criteria given by the client through the following methods: emits zero GHG or CO2, considered a low power consumption vehicle, capable of maneuvring around campus, capable to drive on sidewalks and pedestrian paths, comfortable for the user, and customizable appearance for marketing purposes.The proposed system of delivery meets and exceeds all facets of the project and fits within the image of a sustainable and community conscience organization. The following sections discuss the investigation, design and implementation of the AMS Food Delivery System.Disclaimer: “UBC SEEDS provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Coordinator about the current status of the subject matter of a project/report.”Applied Science, Faculty ofUnreviewedUndergraduat

    Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates

    No full text
    Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits.ISSN:2041-172

    Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates

    No full text
    Abstract Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits
    corecore