5 research outputs found

    Supplementary Material for: Prediction of Outcome in Neonates with Hypoxic-Ischemic Encephalopathy II: Role of Amplitude-Integrated Electroencephalography and Cerebral Oxygen Saturation Measured by Near-Infrared Spectroscopy

    No full text
    <p><b><i>Background:</i></b> Few data have been published on the combined use of amplitude-integrated electroencephalography (aEEG) and near-infrared spectroscopy (NIRS) for outcome prediction in neonates cooled for hypoxic-ischemic encephalopathy (HIE). <b><i>Objective:</i></b> Our aim<b> </b>was to evaluate the predictive values and the most powerful predictive combinations of single aEEG and NIRS parameters and the respective cut-off values with regard to short-term outcomes in HIE II. <b><i>Methods:</i></b> aEEG and NIRS were prospectively studied at the Medical University of Vienna in the first 102 h of life with regard to magnetic resonance imaging (MRI). Thirty-two neonates diagnosed with HIE II treated with hypothermia were investigated. The measurement period was divided into 6-h epochs. According to MRI, 2 outcome groups were defined and predictive values of aEEG parameters, regional cerebral oxygen saturation (rScO<sub>2</sub>), and the additional value of both methods combined were studied. Receiver operating curves (ROC) were obtained and area under the curve (AUC) values were calculated. ROC were then used to detect the optimal cut-off points, sensitivity, specificity, positive predictive values, and negative predictive values. <b><i>Results:</i></b> At all time epochs, combined parameter scores were more predictive than single parameter scores. The highest AUC were observed between 18 and 60 h of cooling for the aEEG summation score (0.72-0.84) and for (background pattern + seizures) × rScO<sub>2</sub> (0.79-0.85). At 42-60 h sensitivity was similar between those 2 scores (87.5-90.0%), but the addition of NIRS to aEEG led to an increase in specificity (from 52.4-59.1% to 72.7-90.5%). <b><i>Conclusions:</i></b> In HIE II, aEEG and NIRS are important predictors of short-term outcome. The combination of both methods improves prognostication. The highest predictive abilities were observed between 18 and 60 h of cooling.</p

    Supplementary Material for: Vaginal Delivery Is Associated with Neurochemical Evidence of Increased Neuroaxonal Remodelling in Infants from the KUNO-Kids Health Study: Cross-Sectional Analysis

    No full text
    Aim: Little is known about neonatal brain plasticity or the impact of birth mode on neurointegrity. As a reflection of neuroaxonal damage, the neuronal structural protein neurofilament light chain (NfL) has emerged as a highly specific biomarker. Our purpose was to test the hypothesis that vaginal delivery is associated with increased NfL in neonates. Methods: NfL concentrations were measured using single-molecule array immunoassay in umbilical cord serum from healthy term neonates enrolled in the prospective KUNO-Kids Health Study. NfL values were investigated for independent influencing factors using linear and logistic models, followed by post hoc propensity score-matching. Results: Of 665 neonates, n = 470 (70.7%) were delivered vaginally and n = 195 (29.3%) by cesarean section. Median serum NfL was significantly higher after vaginal delivery 14.4 pg/mL (11.6–18.5) compared to primary 7.5 pg/mL (6.1–8.9) and secondary cesarean delivery 9.3 pg/mL (7.5–12.0). Multivariable logistic regression models showed delivery mode and gestational age to be independently associated with NfL. Propensity score-matching analysis confirmed that assisted vaginal delivery generated higher NfL compared to vaginal (non-assisted), while lowest levels were associated with cesarean section. Interpretation: Our data confirm the significant impact of birth mode on neonatal NfL levels. The persistence of these differences and their potential long-term impact have yet to be investigated
    corecore