3,453 research outputs found

    A semiclassical model of light mesons

    Full text link
    The dominantly orbital state description is applied to the study of light mesons. The effective Hamiltonian is characterized by a relativistic kinematics supplemented by the usual funnel potential with a mixed scalar and vector confinement. The influence of two different finite quark masses and potential parameters on Regge and vibrational trajectories is discussed.Comment: 1 figur

    Universality of Regge and vibrational trajectories in a semiclassical model

    Full text link
    The orbital and radial excitations of light-light mesons are studied in the framework of the dominantly orbital state description. The equation of motion is characterized by a relativistic kinematics supplemented by the usual funnel potential with a mixed scalar and vector confinement. The influence of finite quark masses and potential parameters on Regge and vibrational trajectories is discussed. The case of heavy-light mesons is also presented.Comment: 12 page

    Long term monitoring of bright TeV Blazars with the MAGIC telescope

    Full text link
    The MAGIC telescope has performed long term monitoring observations of the bright TeV Blazars Mrk421, Mrk501 and 1ES1959+650. Up to 40 observations, 30 to 60 minutes each have been performed for each source evenly distributed over the observable period of the year. The sensitivity of MAGIC is sufficient to establish a flux level of 25% of the Crab flux for each measurement. These observations are well suited to trigger multiwavelength ToO observations and the overall collected data allow an unbiased study of the flaring statistics of the observed AGNs.Comment: 4 pages, 4 figures, to appear in the proceedings of the 30th International Cosmic Ray Conference, Merida, July 200

    Towards Physical Hybrid Systems

    Full text link
    Some hybrid systems models are unsafe for mathematically correct but physically unrealistic reasons. For example, mathematical models can classify a system as being unsafe on a set that is too small to have physical importance. In particular, differences in measure zero sets in models of cyber-physical systems (CPS) have significant mathematical impact on the mathematical safety of these models even though differences on measure zero sets have no tangible physical effect in a real system. We develop the concept of "physical hybrid systems" (PHS) to help reunite mathematical models with physical reality. We modify a hybrid systems logic (differential temporal dynamic logic) by adding a first-class operator to elide distinctions on measure zero sets of time within CPS models. This approach facilitates modeling since it admits the verification of a wider class of models, including some physically realistic models that would otherwise be classified as mathematically unsafe. We also develop a proof calculus to help with the verification of PHS.Comment: CADE 201

    Reducing quantum control for spin-spin entanglement distribution

    Full text link
    We present a protocol that sets maximum stationary entanglement between remote spins through scattering of mobile mediators without initialization, post-selection or feedback of the mediators' state. No time-resolved tuning is needed and, counterintuitively, the protocol generates two-qubit singlet states even when classical mediators are used. The mechanism responsible for such effect is resilient against non-optimal coupling strengths and dephasing affecting the spins. The scheme uses itinerant particles and scattering centres and can be implemented in various settings. When quantum dots and photons are used a striking result is found: injection of classical mediators, rather than quantum ones, improves the scheme efficiency.Comment: 7 pages, 5 figures, replaced with published versio

    Identification of the Beutler-Fano formula in eigenphase shifts and eigentime delays near a resonance

    Get PDF
    Eigenphase shifts and eigentime delays near a resonance for a system of one discrete state and two continua are shown to be functionals of the Beutler- Fano formulas using appropriate dimensionless energy units and line profile indices. Parameters responsible for the avoided crossing of eigenphase shifts and eigentime delays are identified. Similarly, parameters responsible for the eigentime delays due to a frame change are identified. With the help of new parameters, an analogy with the spin model is pursued for the S matrix and time delay matrix. The time delay matrix is shown to comprise three terms, one due to resonance, one due to a avoided crossing interaction, and one due to a frame change. It is found that the squared sum of time delays due to the avoided crossing interaction and frame change is unity.Comment: 17 pages, 3 figures, RevTe
    • …
    corecore