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Abstract
We give another proof of a strong version of Ray’s theorem ensuring that every
unbounded closed convex subset of a Hilbert space admits a fixed point free firmly
nonexpansive mapping.
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1 Ray’s theorem and its strong version
In , Browder [] showed the following fixed point theorem for nonexpansive mappings
in Hilbert spaces.

Theorem . (Browder’s theorem []) Let C be a nonempty closed convex subset of a
Hilbert space H . If C is bounded, then every nonexpansive self-mapping on C has a fixed
point.

Ray [] showed that the converse of Browder’s theorem holds.

Theorem . (Ray’s theorem []) Let C be a nonempty closed convex subset of a Hilbert
space H . If every nonexpansive self-mapping on C has a fixed point, then C is bounded.

Later, Sine [] gave a simple proof of Theorem . by applying a version of the uniform
boundedness principle and the convex combination of a sequence of metric projections
onto closed and convex sets.

Recently, Aoyama et al. [], obtained a counterpart of Theorem . for λ-hybrid map-
pings in Hilbert spaces by using the following strong version of Ray’s theorem.

Theorem . (A strong version of Ray’s theorem []) Let C be a nonempty closed convex
subset of a Hilbert space H . If every firmly nonexpansive self-mapping on C has a fixed
point, then C is bounded.

It should be noted that Theorem . was actually shown by using Theorem . in [].
See also [, ] on generalizations of Theorem . for firmly nonexpansive type mappings
in Banach spaces.
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In this paper, motivated by the papers mentioned above, we give another proof of The-
orem . by using a version of the uniform boundedness principle and a single metric
projection onto a closed and convex set. Since every firmly nonexpansive mapping is non-
expansive, Theorem . immediately implies Theorem ..

2 A fixed point free firmly nonexpansive mapping
Throughout this paper, every linear space is real. The inner product and the induced norm
of a Hilbert space H are denoted by 〈·, ·〉 and ‖ · ‖, respectively. The dual space of a Banach
space X is denoted by X∗. The following is a version of the uniform boundedness principle.

Theorem . (see, for instance, []) If C is a nonempty subset of a Banach space X such
that x∗(C) is bounded for each x∗ ∈ X∗, then C is bounded.

Let C be a nonempty closed convex subset of a Hilbert space H . Then a self-mapping T
on C is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C; firmly nonexpansive
[, ] if ‖Tx – Ty‖ ≤ 〈Tx – Ty, x – y〉 for all x, y ∈ C. The set of all fixed points of T is
denoted by F(T). The mapping T is said to be fixed point free if F(T) is empty. It is well
known that for each x ∈ H , there exists a unique zx ∈ C such that ‖zx – x‖ ≤ ‖y – x‖ for all
y ∈ C. The metric projection PC of H onto C, which is defined by PCx = zx for all x ∈ H , is
a firmly nonexpansive mapping of H onto C. This fact directly follows from the fact that
the equivalence

z = PCx ⇐⇒ sup
y∈C

〈y – z, x – z〉 ≤  (.)

holds for all (x, z) ∈ H × C. See [–] for more details on nonexpansive mappings.
We first show the following lemma.

Lemma . Let C be a nonempty closed convex subset of a Hilbert space H , a be an element
of H , and T be the mapping defined by Tx = PC(x + a) for all x ∈ C. Then T is a firmly
nonexpansive self-mapping on C such that

F(T) =
{

u ∈ C : 〈u, a〉 = sup
y∈C

〈y, a〉
}

. (.)

Proof Since PC is firmly nonexpansive, we have

‖Tx – Ty‖ ≤ 〈
PC(x + a) – PC(y + a), (x + a) – (y + a)

〉
= 〈Tx – Ty, x – y〉

for all x, y ∈ C. Thus T is a firmly nonexpansive self-mapping on C. Fix any u ∈ C. Accord-
ing to (.), we know that

Tu = u ⇐⇒ sup
y∈C

〈
y – u, (u + a) – u

〉 ≤  ⇐⇒ 〈u, a〉 = sup
y∈C

〈y, a〉

and hence (.) holds. �

Using Theorem . and Lemma ., we give another proof of Theorem ..
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Proof of Theorem . If C is unbounded, then Theorem . implies that x∗(C) is un-
bounded for some x∗ ∈ H∗. Since H is a real Hilbert space, we have a ∈ H such that
supy∈C〈y, a〉 = ∞. By Lemma . and the choice of a, the mapping T defined as in
Lemma . is a fixed point free firmly nonexpansive self-mapping on C. �
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