4 research outputs found

    Relationship Between Baseline Prostate-specific Antigen on Cancer Detection and Prostate Cancer Death:Long-term Follow-up from the European Randomized Study of Screening for Prostate Cancer

    Get PDF
    Background: The European Association of Urology guidelines recommend a risk-based strategy for prostate cancer screening based on the first prostate-specific antigen (PSA) level and age. Objective: To analyze the impact of the first PSA level on prostate cancer (PCa) detection and PCa-specific mortality (PCSM) in a population-based screening trial (repeat screening every 2–4 yr). Design, setting, and participants: We evaluated 25 589 men aged 55–59 yr, 16 898 men aged 60–64 yr, and 12 936 men aged 65–69 yr who attended at least one screening visit in the European Randomized Study of Screening for Prostate Cancer (ERSPC) trial (screening arm: repeat PSA testing every 2–4 yr and biopsy in cases with elevated PSA; control arm: no active screening offered) during 16-yr follow-up (FU). Outcome measurements and statistical analysis: We assessed the actuarial probability for any PCa and for clinically significant (cs)PCa (Gleason ≥7). Cox proportional-hazards regression was performed to assess whether the association between baseline PSA and PCSM was comparable for all age groups. A Lorenz curve was computed to assess the association between baseline PSA and PCSM for men aged 60–61 yr. Results and limitations: The overall actuarial probability at 16 yr ranged from 12% to 16% for any PCa and from 3.7% to 5.7% for csPCa across the age groups. The actuarial probability of csPCa at 16 yr ranged from 1.2–1.5% for men with PSA &lt;1.0 ng/ml to 13.3–13.8% for men with PSA ≥3.0 ng/ml. The association between baseline PSA and PCSM differed marginally among the three age groups. A Lorenz curve for men aged 60–61 yr showed that 92% of lethal PCa cases occurred among those with PSA above the median (1.21 ng/ml). In addition, for men initially screened at age 60–61 yr with baseline PSA &lt;2 ng/ml, further continuation of screening is unlikely to be beneficial after the age of 68–70 yr if PSA is still &lt;2 ng/ml. No case of PCSM emerged in the subsequent 8 yr (up to age 76–78 yr). A limitation is that these results may not be generalizable to an opportunistic screening setting or to contemporary clinical practice. Conclusions: In all age groups, baseline PSA can guide decisions on the repeat screening interval. Baseline PSA of &lt;1.0 ng/ml for men aged 55–69 yr is a strong indicator to delay or stop further screening. Patient summary: In prostate cancer screening, the patient's baseline PSA (prostate-specific antigen) level can be used to guide decisions on when to repeat screening. The PSA test when used according to current knowledge is valuable in helping to reduce the burden of prostate cancer.</p

    Key learning on the promise and limitations of MRI in prostate cancer screening

    No full text
     MRI retains its ability to reduce the harm of prostate biopsies by decreasing biopsy rates and the detection of indolent cancers in population-based screening studies aiming to find clinically significant prostate cancers. Limitations of low positive predictive values and high reader variability in diagnostic performance require optimisations in patient selection, imaging protocols, interpretation standards, diagnostic thresholds, and biopsy methods. Improvements in diagnostic accuracy could come about through emerging technologies like risk calculators and polygenic risk scores to select men for MRI. Furthermore, artificial intelligence and workflow optimisations focused on streamlining the diagnostic pathway, quality control, and assurance measures will improve MRI variability. Clinical relevance statement: MRI significantly reduces harm in prostate cancer screening, lowering unnecessary biopsies and minimizing the overdiagnosis of indolent cancers. MRI maintains the effective detection of high-grade cancers, thus improving the overall benefit-to-harm ratio in population-based screenings with or without using serum prostate-specific antigen (PSA) for patient selection. Key Points: • The use of MRI enables the harm reduction benefits seen in individual early cancer detection to be extended to both risk-stratified and non-stratified prostate cancer screening populations. • MRI limitations include a low positive predictive value and imperfect reader variability, which require standardising interpretations, biopsy methods, and integration into a quality diagnostic pathway. • Current evidence is based on one-time point use of MRI in screening; MRI effectiveness in multiple rounds of screening is not well-documented.</p

    Key learning on the promise and limitations of MRI in prostate cancer screening

    No full text
     MRI retains its ability to reduce the harm of prostate biopsies by decreasing biopsy rates and the detection of indolent cancers in population-based screening studies aiming to find clinically significant prostate cancers. Limitations of low positive predictive values and high reader variability in diagnostic performance require optimisations in patient selection, imaging protocols, interpretation standards, diagnostic thresholds, and biopsy methods. Improvements in diagnostic accuracy could come about through emerging technologies like risk calculators and polygenic risk scores to select men for MRI. Furthermore, artificial intelligence and workflow optimisations focused on streamlining the diagnostic pathway, quality control, and assurance measures will improve MRI variability. Clinical relevance statement: MRI significantly reduces harm in prostate cancer screening, lowering unnecessary biopsies and minimizing the overdiagnosis of indolent cancers. MRI maintains the effective detection of high-grade cancers, thus improving the overall benefit-to-harm ratio in population-based screenings with or without using serum prostate-specific antigen (PSA) for patient selection. Key Points: • The use of MRI enables the harm reduction benefits seen in individual early cancer detection to be extended to both risk-stratified and non-stratified prostate cancer screening populations. • MRI limitations include a low positive predictive value and imperfect reader variability, which require standardising interpretations, biopsy methods, and integration into a quality diagnostic pathway. • Current evidence is based on one-time point use of MRI in screening; MRI effectiveness in multiple rounds of screening is not well-documented.</p
    corecore