354 research outputs found

    Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors

    Get PDF
    BACKGROUND: The tear film is a thin layer of fluid that covers the ocular surface and is involved in lubrication and protection of the eye. Little is known about the protein composition of tear fluid but its deregulation is associated with disease states, such as diabetic dry eyes. This makes this body fluid an interesting candidate for in-depth proteomic analysis. RESULTS: In this study, we employ state-of-the-art mass spectrometric identification, using both a hybrid linear ion trap-Fourier transform (LTQ-FT) and a linear ion trap-Orbitrap (LTQ-Orbitrap) mass spectrometer, and high confidence identification by two consecutive stages of peptide fragmentation (MS/MS/MS or MS(3)), to characterize the protein content of the tear fluid. Low microliter amounts of tear fluid samples were either pre-fractionated with one-dimensional SDS-PAGE and digested in situ with trypsin, or digested in solution. Five times more proteins were detected after gel electrophoresis compared to in solution digestion (320 versus 63 proteins). Ontology classification revealed that 64 of the identified proteins are proteases or protease inhibitors. Of these, only 24 have previously been described as components of the tear fluid. We also identified 18 anti-oxidant enzymes, which protect the eye from harmful consequences of its exposure to oxygen. Only two proteins with this activity have been previously described in the literature. CONCLUSION: Interplay between proteases and protease inhibitors, and between oxidative reactions, is an important feature of the ocular environment. Identification of a large set of proteins participating in these reactions may allow discovery of molecular markers of disease conditions of the eye

    Sub-Riemannian geodesics on nested principal bundles

    Full text link
    We study the interplay between geodesics on two non-holono\-mic systems that are related by the action of a Lie group on them. After some geometric preliminaries, we use the Hamiltonian formalism to write the parametric form of geodesics. We present several geometric examples, including a non-holonomic structure on the Gromoll-Meyer exotic sphere and twistor space.Comment: 10 page

    Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system

    Get PDF
    BACKGROUND: Mass spectrometry has become a powerful tool for the analysis of large numbers of proteins in complex samples, enabling much of proteomics. Due to various analytical challenges, so far no proteome has been sequenced completely. O'Shea, Weissman and co-workers have recently determined the copy number of yeast proteins, making this proteome an excellent model system to study factors affecting coverage. RESULTS: To probe the yeast proteome in depth and determine factors currently preventing complete analysis, we grew yeast cells, extracted proteins and separated them by one-dimensional gel electrophoresis. Peptides resulting from trypsin digestion were analyzed by liquid chromatography mass spectrometry on a linear ion trap-Fourier transform mass spectrometer with very high mass accuracy and sequencing speed. We achieved unambiguous identification of more than 2,000 proteins, including very low abundant ones. Effective dynamic range was limited to about 1,000 and effective sensitivity to about 500 femtomoles, far from the subfemtomole sensitivity possible with single proteins. We used SILAC (stable isotope labeling by amino acids in cell culture) to generate one-to-one pairs of true peptide signals and investigated if sensitivity, sequencing speed or dynamic range were limiting the analysis. CONCLUSION: Advanced mass spectrometry methods can unambiguously identify more than 2,000 proteins in a single proteome. Complex mixture analysis is not limited by sensitivity but by a combination of dynamic range (high abundance peptides preventing sequencing of low abundance ones) and by effective sequencing speed. Substantially increased coverage of the yeast proteome appears feasible with further development in software and instrumentation

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Proteomic Changes Resulting from Gene Copy Number Variations in Cancer Cells

    Get PDF
    Along the transformation process, cells accumulate DNA aberrations, including mutations, translocations, amplifications, and deletions. Despite numerous studies, the overall effects of amplifications and deletions on the end point of gene expression—the level of proteins—is generally unknown. Here we use large-scale and high-resolution proteomics combined with gene copy number analysis to investigate in a global manner to what extent these genomic changes have a proteomic output and therefore the ability to affect cellular transformation. We accurately measure expression levels of 6,735 proteins and directly compare them to the gene copy number. We find that the average effect of these alterations on the protein expression is only a few percent. Nevertheless, by using a novel algorithm, we find the combined impact that many of these regional chromosomal aberrations have at the protein level. We show that proteins encoded by amplified oncogenes are often overexpressed, while adjacent amplified genes, which presumably do not promote growth and survival, are attenuated. Furthermore, regulation of biological processes and molecular complexes is independent of general copy number changes. By connecting the primary genome alteration to their proteomic consequences, this approach helps to interpret the data from large-scale cancer genomics efforts
    • …
    corecore