27 research outputs found

    Experimental and Numerical Strategy for the Determination of Mechanical Properties Related to Human Cortical Bone Fracture

    No full text
    ICTAEM 2020, Proceedings of the Third International Conference on Theoretical, Applied and Experimental Mechanics , Athenes, GRECE, 14-/06/2020 - 17/06/2020The paper presents an experimental test of macrocrack propagation in bones associated with a numerical strategy to determine from this test some mechanical properties by inverse identification. A 3 point bending test is performed on a notched segment of long human bone, and the load vs notch opening displacement is measured. The compliance method is applied in the context of a realistic FE simulation of the test. A first application of this methodology is described and shows its feasibility and capabilities. The ultimate objective of this research project is to develop a probabilistic modelling of the macrocracking processes in human long bone tissues based on an experimental database of mechanical parameters fed up by this methodology

    Propagation de fissure sur tronçon d'os long rainuré

    No full text
    International audienceUn essai de propagation d’une macrofissure dans un tronçon d’os cortical humain est dĂ©veloppĂ© dans l’objectif de comprendre les mĂ©canismes de rupture du tissu Ă  cette Ă©chelle et d’identifier des propriĂ©tĂ©s de rupture, prĂ©requis indispensables Ă  une modĂ©lisation ultĂ©rieure. Une premiĂšre campagne d’essais a Ă©tĂ© rĂ©alisĂ©e sur des segments de diaphyses fĂ©morales entaillĂ©s soumis Ă  une flexion trois points [1, 2]. Toutefois, l’orientation de la macrofissure est influencĂ©e par l’anisotropie du matĂ©riau. Afin d’orienter les processus de rupture dans la direction transversale uniquement, une modification de la procĂ©dure d’essai est proposĂ©e. InspirĂ©e de travaux bibliographiques [3, 4], les tronçons entaillĂ©s sont prĂ©alablement rainurĂ©s : une gorge hĂ©misphĂ©rique est usinĂ©e sur la surface externe de l’os afin de guider la fissure dans la direction transversale au niveau de l’entaille. Les prĂ©cautions prises pour la rĂ©alisation de l’essai de flexion trois points garantissent une maĂźtrise de la procĂ©dure de test malgrĂ© la variabilitĂ© gĂ©omĂ©trique des spĂ©cimens : positionnement et conditions d’appuis des Ă©chantillons, alignement des supports du capteur d’ouverture d’entaille, positionnement et hauteur de l’entaille, profondeur uniforme de la gorge. Le vĂ©rin est pilotĂ© indirectement par l’ouverture d’entaille, via un capteur de dĂ©placement inductif. Une sĂ©rie de cycles de dĂ©chargements/rechargements est mise en Ɠuvre afin de suivre les Ă©volutions des quantitĂ©s rĂ©siduelles, de l’endommagement prĂ©-pic et de la propagation de macrofissure en post-pic. Les rĂ©sultats obtenus sont exprimĂ©s en termes de courbes d’effort en fonction de l’ouverture d’entaille. L’exploitation des cycles de charges-dĂ©charges ainsi que des ouvertures rĂ©siduelles permettent de mettre en Ă©vidence le rĂŽle primordial de la fissuration dans les mĂ©canismes de rupture. Les rĂ©sultats montrent que l’ouverture rĂ©siduelle est directement liĂ©e au niveau d’affaiblissement structurel, consĂ©quence des processus de fissuration, et qu’aucun mĂ©canisme de plasticitĂ© n’est visible Ă  cette Ă©chelle. L’analyse de ces cycles permet Ă©galement d’émettre une hypothĂšse sur le rĂŽle de contraintes internes rĂ©siduelles sur les dĂ©formations permanentes. Les rĂ©sultats montrent Ă©galement que la rainure permet de guider parfaitement la macrofissure dans la direction transversale et la comparaison avec les rĂ©sultats sur tronçons non-rainurĂ©s montrent bien l’impact de cette modification gĂ©omĂ©trique du spĂ©cimen. En perspective future, cet essai sera utilisĂ© pour l’identification par analyse inverse de propriĂ©tĂ©s mĂ©caniques dans la direction transversale

    Macrocrack propagation in a notched shaft segment of human long bone: Experimental results and mechanical aspects

    No full text
    Experimenting with crack propagation in human cortical tissue is a necessary prerequisite for developing a cracking model. A three-point bending test on a shaft section of a notched human long bone is presented. A procedure for carrying out the experimental test, including unloading/reloading cycles, is implemented. The results obtained are analyzed regarding the physical mechanisms which occur in the different phases of the test, and during the cycles. The prominent role of cracking is highlighted. In addition a hypothesis is proposed concerning the potential effect of initial internal residual stresses, due to bone remodelling, on the significant residual notch openings after unloading and on the cycles' shape

    Development and validation of an optimized finite element model of the human orbit

    No full text
    The authors' main purpose was to develop a detailed finite element model (FEM) of the human orbit and to validate it by analyzing its behavior under the stress of blunt traumas. Materials and methods: A pre-existing 3D FEM of a human head was modified and used in this study. Modifications took into account preliminary research carried out on PubMed database. Data from a CT scan of the head were computed with Mimics [10TDDIF]softwaretore−createtheskullgeometry.Themeshproduction,themodel[1TDDIF] software to re-create the skull geometry. The mesh production, the model[1TDDIF]'s properties and the simulations of blunt orbital traumas were conducted on Hyperworks1 software. Results: The resulting 3D FEM was composed of 640 000 elements and was used to perform blunt trauma simulations on an intact orbit. A total of 27 tests were simulated. Fifteen tests were realized with a metallic cylinder impactor; 12 tests simulated a hit by a closed fist. In all the tests conducted (27/27), the orbital floor was fractured. Fracture patterns were similar to those found in real clinical situations according to the buckling and hydraulic theories of orbital floor fractures. Discussion: The similitude between the fracture patterns produced on the model and those observed in vivo allows for a validation of the model. This model constitutes, at the authors knowledge, the most sophisticated one ever developed

    Finite element analysis of the human orbit. Behavior of titanium mesh for orbital floor reconstruction in case of trauma recurrence

    No full text
    IntroductionThe authors’ main purpose was to simulate the behavior of a titanium mesh implant (TMI) used to reconstruct the orbital floor under the stress of a blunt trauma.Materials and methodsThe orbital floor of a previously validated finite element model (FEM) of the human orbit was numerically fractured and reconstructed by a simplified TMI. Data from a CT scan of the head were computed with MICMICS (Materialise, Louvain, Belgium) software to re-create the skull's geometry. The meshing production, the model's properties management and the simulations of blunt traumas of the orbit were conducted on HYPERWORKS¼ software (Altair Engineering, Detroit, MI, USA). Some of the elements of the orbital floor were selected and removed to model the fracture; these elements were duplicated, their characteristics being changed by those of titanium to create a TMI covering this fracture. A 3D FEM composed of 640,000 elements was used to perform 21 blunt trauma simulations on the reconstructed orbit.ResultsIn 90.4% (19/21) of the tests conducted, the TMI, whether free from any bony attachment or screwed to the orbital rim, has tended to move in the orbit and/or to deform.DiscussionIn the event of traumatic recurrence, which is not rare, TMIs may deform in a “blow-in” motion and threaten intra-orbital structures
    corecore