6 research outputs found

    Differences in frontal and limbic brain activation in a small sample of monozygotic twin pairs discordant for severe stressful life events

    Get PDF
    AbstractMonozygotic twin pairs provide a valuable opportunity to control for genetic and shared environmental influences while studying the effects of nonshared environmental influences. The question we address with this design is whether monozygotic twins selected for discordance in exposure to severe stressful life events during development (before age 18) demonstrate differences in brain activation during performance of an emotional word-face Stroop task. In this study, functional magnetic resonance imaging was used to assess brain activation in eighteen young adult twins who were discordant in exposure to severe stress such that one twin had two or more severe events compared to their control co-twin who had no severe events. Twins who experienced higher levels of stress during development, compared to their control co-twins with lower stress, exhibited significant clusters of greater activation in the ventrolateral and medial prefrontal cortex, basal ganglia, and limbic regions. The control co-twins showed only the more typical recruitment of frontoparietal regions thought to be important for executive control of attention and maintenance of task goals. Behavioral performance was not significantly different between twins within pairs, suggesting the twins with stress recruited additional neural resources associated with affective processing and updating working memory when performing at the same level. This study provides a powerful glimpse at the potential effects of stress during development while accounting for shared genetic and environmental influences

    Overlapping and Distinct Neural Correlates of Imitating and Opposing Facial Movements

    No full text
    Previous studies have demonstrated that imitating a face can be relatively automatic and reflexive. In contrast, opposing facial expressions may require engaging flexible, cognitive control. However, few studies have examined the degree to which imitation and opposition of facial movements recruit overlapping and distinct neural regions. Furthermore, little work has examined whether opposition and imitation of facial movements differ between emotional and averted eye gaze facial expressions. This study utilized a novel task with 40 participants to compare passive viewing, imitation and opposition of emotional faces looking forward and neutral faces with averted eye gaze [(3: Look, Imitate, Oppose) x (2: Emotion, Averted Eye)]. Imitation and opposition of both types of facial movements elicited overlapping activation in frontal, premotor, superior temporal and anterior intraparietal regions. These regions are recruited during cognitive control, face processing and mirroring tasks. For both emotional and averted eye gaze photos, opposition engaged the superior frontal gyrus, superior temporal sulcus and the anterior intraparietal sulcus to a greater extent compared to imitation. Finally, stimulus type and instruction interacted, such that for the eye gaze condition only, greater activation was observed in the dorsal anterior cingulate (dACC) during opposition compared to imitation, while no significant dACC differences were observed for the emotional expression conditions, which instead showed significantly greater activation in the middle and frontal pole. Overall these results showed significant overlap between imitation and opposition, as well as increased activation of these regions to generate an opposing facial movement relative to imitating

    Turning Down the Heat: Neural Mechanisms of Cognitive Control for Inhibiting Task-irrelevant Emotional Information during Adolescence

    No full text
    One major question in the cognitive neuroscience of cognitive control is whether prefrontal regions contribute to control by upregulating the processing of task-relevant material or by downregulating the processing of task-irrelevant material. Here we take a unique approach to addressing this question by using multi-voxel pattern analysis, which allowed us to determine the degree to which each of the task-relevant and task-irrelevant dimensions of a stimulus are being processed in posterior cortex on a trial-by-trial basis. In our study, adolescent participants performed an emotion word – emotional face Stroop task requiring them to determine the emotional valence (positive, negative) of a task-relevant word in the context of a task-irrelevant emotional face. Using mediation models, we determined whether activation of a major cognitive control region, the dorsolateral prefrontal cortex (DLPFC), influences reaction time on a trial-by-trial basis directly or if it does so indirectly by modulating processing of the task-relevant and/or task-irrelevant information in posterior brain regions. To examine the specificity of the effects observed for the DLPFC, similar analyses were performed for the amygdala, a brain region involved in processing of the salient task-irrelevant emotional information. For both congruent and incongruent trials, increased DLPFC activity on a given trial was associated with reduced perceptual processing of the task-irrelevant face, consistent with the idea that top-down cognitive control can modulate processing of task-irrelevant information. No effect of DLPFC activity was observed on processing of the task-relevant word. However, increased processing of the task-relevant word was associated with longer RT on congruent trials but not incongruent trials, which may reflect a need for greater processing of the task-relevant word to overcome any influence of the pre-potent task-irrelevant face. In a more exploratory aspect of our investigation, multi-level moderated mediation models were used to examine the influence of individual differences on the observed brain-behavior relationships. For congruent trials, the influence of task-irrelevant face processing on RT was decreased in individuals with higher self-reported Executive Control and increased in those with higher levels of self-reported Negative Affect. These results suggest that cognitive control regions in prefrontal cortex during adolescence can suppress the processing of task-irrelevant information in sensory cortex to influence performance (RT). The processing of task-relevant information may also influence performance, but such processing did not reveal evidence of being modulated by cognitive control regions. Moreover, these effects are sensitive to individual differences in the self-reported ability to exert cognitive and affective control. As such, we provide insights into the more precise mechanisms by which cognitive control influences task performance on a trial-by-trial basis during adolescence
    corecore