1 research outputs found

    Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    Get PDF
    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. Generate the key nonnuclear products to allow Agency decision makers to consider FSP as a viable option for potential future flight development. The pump must be compatible with the liquid NaK coolant and have adequate performance to enable a viable flight system. Idaho National Laboratory (INL) was tasked with the design and fabrication of an ALIP suitable for the FSP reference mission. Under the program, a quarter-scale FSP technology demonstration is under construction to test the end-to-end conversion of simulated nuclear thermal power to usable electrical power intended to raise the entire FSP system to Technology Readiness Level 6. An ALIP for this TDU was fabricated under the direction of the INL and shipped to NASA Marshall Space Flight Center (MSFC) for testing at representative operating conditions. This pump was designed to meet the requirements of the TDU experiment. The ALIP test circuit (ATC) at MSFC, previously used to conduct performance evaluation on another ALIP6 was used to test the present TDU pump for the FSP Technology Development program
    corecore