7 research outputs found

    The Zinc Dyshomeostasis Hypothesis of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline

    Common thiolation mechanism in the biosynthesis of tRNA thiouridine and sulphur-containing cofactors

    No full text
    2-Thioribothymidine (s2T), a modified uridine, is found at position 54 in transfer RNAs (tRNAs) from several thermophiles; s2T stabilizes the L-shaped structure of tRNA and is essential for growth at higher temperatures. Here, we identified an ATPase (tRNA-two-thiouridine C, TtuC) required for the 2-thiolation of s2T in Thermus thermophilus and examined in vitro s2T formation by TtuC and previously identified s2T-biosynthetic proteins (TtuA, TtuB, and cysteine desulphurases). The C-terminal glycine of TtuB is first activated as an acyl-adenylate by TtuC and then thiocarboxylated by cysteine desulphurases. The sulphur atom of thiocarboxylated TtuB is transferred to tRNA by TtuA. In a ttuC mutant of T. thermophilus, not only s2T, but also molybdenum cofactor and thiamin were not synthesized, suggesting that TtuC is shared among these biosynthetic pathways. Furthermore, we found that a TtuB–TtuC thioester was formed in vitro, which was similar to the ubiquitin-E1 thioester, a key intermediate in the ubiquitin system. The results are discussed in relation to the mechanism and evolution of the eukaryotic ubiquitin system

    DNA Methylation: Biological Implications and Modulation of Its Aberrant Dysregulation

    No full text
    The alteration of the DNA methylation pattern is often related to the onset of diseases based on epigenetic dysregulation, primarily cancer. In this scenery the development of DNA methyltransferase inhibitors is one of the most attractive challenges for anticancer therapy. The present chapter proposes a comprehensive classification of the DNA methyltransferase inhibitors known in literature, on the basis of their natural or synthetic nature and their mechanism of action

    Archaeal Proteasomes and Sampylation

    No full text
    corecore