40 research outputs found

    The evolutionary dynamics of selfish replicators: a two-level selection model

    No full text
    International audienc

    Why are organelles uniparentally inherited ?

    No full text
    International audienc

    The evolutionary dynamics of selfish replicators: a two-level selection model

    No full text
    International audienc

    Evolution of mutualism between globeflowers and their pollinating flies

    No full text
    International audiencePlant/seed-eater pollinators mutualisms involve a plant pollinated by an insect whose larvae develop by eating a fraction of host-plant seeds. The outcome of the interaction therefore depends on the number of ovules fertilized by adult visits and the number of seeds destroyed by larvae. Among the very few cases of such mutualisms reported so far is the globeflower-globeflower flies mutualism, which is unique in that it involves several congeneric fly species (Chiastocheta genus) coexisting within a single host-plant species, Trollius europaeus. These species exhibit contrasted oviposition behaviors resulting in a more or less beneficial outcome for the plant. We designed an adaptive dynamics model to investigate how morphological traits of globeflower could affect the evolution of oviposition in its pollinating flies. Three fly traits (flower age at oviposition, clutch size and the level of avoidance of already parasitized flowers) and one plant trait (closed or open corolla) were examined. Whatever the shape of the flower, evolutionary branching occurs between early and late ovipositing flies, driven by strong competition among larvae within a fruit. Once this branching occurred, the closed shape of the corolla is likely to offer a better protection to eggs of early but not of late ovipositing flies. The difference in egg survival results in higher competition among early larvae and thus selects for decreased clutch size in early flies. This can be seen as a first step in the evolution of a mutualistic behavior. The prediction of our model fits field observations of fly behavior, giving theoretical support to the hypothesis of fly sympatric speciation within its host plant. Moreover, flower closed globe shape can be positively selected in globeflowers as it results in a reduction of parasitism strength. This last evolution therefore leads to a stable mutualism between globeflowers and globeflower flies. (C) 2002 Elsevier Science Ltd. All rights reserved

    A model for antagonistic pleiotropic gene action for mortality and advanced age.

    Get PDF
    Association or linkage studies involving control and long-lived populations provide information on genes that influence longevity. However, the relationship between allele-specific differences in survival and the genetic structure of aging cohorts remains unclear. We model a heterogeneous cohort comprising several genotypes differing in age-specific mortality. In its most general form, without any specific assumption regarding the shape of mortality curves, the model permits derivation of a fundamental property underlying abrupt age-related changes in the composition of a cohort. The model is applied to sex-specific survival curves taken from period life tables, and Gompertz-Makeham mortality coefficients are calculated for the French population. Then, adjustments are performed under Gompertz-Makeham mortality functions for three genotypes composing a heterogeneous cohort, under the constraint of fitting the resultant mortality to the real French population mortality obtained from life tables. Multimodal curves and divergence after the 8th decade appear as recurrent features of the frequency trajectories. Finally, a fit to data previously obtained at the angiotensin-converting-enzyme locus is realized, explaining what had seemed to be paradoxical results-namely, that the frequency of a genotype known as a cardiovascular risk factor was increased in centenarians. Our results help explain the well-documented departure from Gompertz-Makeham mortality kinetics at older ages. The implications of our model are discussed in the context of known genetic effects on human longevity and age-related pathologies. Since antagonistic pleiotropy between early and late survival emerges as a general rule, extrapolating the effects measured for a gene in a particular age class to other ages could be misleading
    corecore