330 research outputs found

    Experimental Verification of the Temperature and Strain Dependence of the Critical Properties in Nb3Sn Wires

    Get PDF
    The critical current density in Nb3Sn conductors is described with an improved scaling formula for the temperature, magnetic field and strain dependence. In an earlier study, it is concluded that the largest uncertainties in this description arise from the temperature dependence that is described with various slightly different empirical relations. For the optimization of the numerical codes, used to predict the stability of large magnet systems, a more accurate description is required. Therefore, two different bronze processed conductors for the ITER CS model coil are analyzed in detail. The critical current is measured at temperatures from 4.2 K up to the critical temperature, in magnetic fields from 1 T to 13 T and with an applied axial strain from -0.6% to +0.4%. The axial strain is applied by a U-shaped bending spring and a comparison is made between brass and Ti-6Al-4V, as substrate materia

    A Review of the Properties of Nb3Sn and Their Variation with A15 Composition, Morphology and Strain State

    Get PDF
    This article gives an overview of the available literature on simplified, well defined (quasi-)homogeneous laboratory samples. After more than 50 years of research on superconductivity in Nb3Sn, a significant amount of results are available, but these are scattered over a multitude of publications. Two reviews exist on the basic properties of A15 materials in general, but no specific review for Nb3Sn is available. This article is intended to provide such an overview. It starts with a basic description of the Niobium-Tin intermetallic. After this it maps the influence of Sn content on the the electron-phonon interaction strength and on the field-temperature phase boundary. The literature on the influence of Cu, Ti and Ta additions will then be briefly summarized. This is followed by a review on the effects of grain size and strain. The article is concluded with a summary of the main results.Comment: Invited Topical Review for Superconductor, Science and Technology. Provisionally scheduled for July 200

    An optimized BSCCO/Ag resonator coil for utility use

    Get PDF
    AC coils made with BSCCO-2223/Ag tapes and operating in liquid nitrogen have a potential for power related applications, e.g., inductors, transformers and current limiters. High-Tc tapes are available from several producers, while access to the coil building know-help is still rather limited, The relevant knowledge and technology suitable for making HTS coils for 50-60 Hz operation is being developed as a part of the current project. To verify the technology, several test solenoids and a first full-scale sub-coil have been manufactured. Electromagnetic, thermal and mechanical analysis of the coils is performed. The electromagnetic analysis focuses on the reduction of the radial magnetic field component in the windings. Voltage-current characteristics and the AC loss data obtained from relevant short sample measurements are applied. A good agreement between calculated and measured V-I curves and losses of the coils is found. A remarkable increase of the critical current and the reduction of the AC loss at the coil edges are predicted and confirmed experimentally. With the losses defined, thermal analysis and optimization of the coil structure are performed numerically followed by measurements for verification. The paper reports on the series of coils developed and explains the features of the projec

    A general scaling relation for the critical current density in Nb3Sn

    Get PDF
    We review the scaling relations for the critical current density (Jc) in Nb3Sn wires and include recent findings on the variation of the upper critical field (Hc2) with temperature (T) and A15 composition. We highlight deficiencies in the Summers/Ekin relations, which are not able to account for the correct Jc(T) dependence. Available Jc(H) results indicate that the magnetic field dependence for all wires can be described with Kramer's flux shear model, if non-linearities in Kramer plots are attributed to A15 inhomogeneities. The strain (eps) dependence is introduced through a temperature and strain dependent Hc2*(T,eps) and Ginzburg- Landau parameter kappa1(T,eps) and a strain dependent critical temperature Tc(eps). This is more consistent than the usual Ekin unification, which uses two separate and different dependencies on Hc2*(T) and Hc2*(eps). Using a correct temperature dependence and accounting for the A15 inhomogeneities leads to a remarkable simple relation for Jc(H,T,eps). Finally, a new relation for s(eps) is proposed, based on the first, second and third strain invariants.Comment: Accepted Topical Review for Superconductor, Science and Technolog

    Heat treatment optimizations for Wind-and-React Bi-2212 racetrack coils

    Get PDF
    Lawrence Berkeley National Laboratory (LBNL) is developing Wind-and-React (W&R) Bi sr cacu o +δ (Bi-2212) accelerator magnet technology for insert coils, to surpass the intrinsic limitations of Nb-based magnets, and eventually develop hybrid systems that can approach 20 T dipole fields. The Bi-2212 technology is being developed in close collaboration with industry, and has been partly supported by the US Very High Field Superconducting Magnet Collaboration (VHFSMC). Steady improvements were made over the last several years, with coil HTS-SC08 reaching 2636 A, or about 85% of its witness sample critical current (Ic). Though this is still a factor 3 to 4 too low to be competitive with Nb-based materials, it is expected that the required Ic can be achieved through further conductor optimizations. Recent developments include the commissioning of infrastructure for the reaction of coils at LBNL. Earlier coils were fabricated and tested at LBNL, but were reacted at the wire manufacturer. We describe in detail the furnace calibrations and heat treatment optimizations that enable coil reactions at temperatures approaching 890 °C with a homogeneity of ¹ 1 °C in a pure oxygen flow. We reacted two new coils at LBNL, and tested the performance of coil HTS-SC10 at 4.2 K in self-field using a superconducting transformer system. We find that its performance is consistent with witness samples, and comparable to coil HTS-SC08, which is an identical coil that was reacted at Oxford Instruments Superconductor Technology (OST), thereby validating the in-house reaction process. 2 2 2

    Thin film growth by pulsed laser deposition and properties of 122-type iron-based superconductor AE(Fe1--xCox)2As2 (AE = alkaline earth)

    Full text link
    This paper reports comprehensive results on thin-film growth of 122-type iron-pnictide superconductors, AE(Fe1-xCox)2As2 (AE = Ca, Sr, and Ba, AEFe2As2:Co) by a pulsed laser deposition method using a neodymium-doped yttrium aluminum garnet laser as an excitation source. The most critical parameter to produce the SrFe2As2:Co and BaFe2As2:Co phases is the substrate temperature (Ts). It is difficult to produce highly-pure CaFe2As2:Co phase thin film at any Ts. For BaFe2As2:Co epitaxial films, controlling Ts at 800-850 {\deg}C and growth rate to 2.8-3.3 {\AA}/s produced high-quality films with good crystallinity, flat surfaces, and high critical current densities > 1 MA/cm2, which were obtained for film thicknesses from 100 to 500 nm. The doping concentration x was optimized for Ba(Fe1-xCox)2As2 epitaxial films, leading to the highest critical temperature of 25.5 K in the epitaxial films with the nominal x = 0.075.Comment: will be published in the special issue of Superconductor Science and Technology, `Iron12
    • …
    corecore