15 research outputs found

    Clinical outcomes and toxicity of proton beam radiation therapy for re-irradiation of locally recurrent breast cancer

    Get PDF
    Purpose: Repeat radiation therapy (RT) using photons/X-rays for locally recurrent breast cancer results in increased short and long-term toxicity. Proton beam RT (PBRT) can minimize dose to surrounding organs, thereby potentially reducing toxicity. Here, we report the toxicity and clinical outcomes for women who underwent re-irradiation to the chest wall for locally recurrent breast cancer using PBRT. Materials and methods: This was a retrospective study analyzing 16 consecutive patients between 2013 and 2018 with locally recurrent breast cancer who underwent re-irradiation to the chest wall with PBRT. For the recurrent disease, patients underwent maximal safe resection, including salvage mastectomy, wide local excision, or biopsy only per surgeons recommendations. Systemic therapy was used per the recommendation of the medical oncologist. Patients were treated with median dose of 50.4 Cobalt Gray Equivalent (CGyE) in 28 fractions at the time of re-irradiation. Follow-up was calculated from the start of second RT course. Acute toxicities were defined as those occurring during treatment or up to 8 weeks after treatment. Late toxicities were defined as those occurring more than 8 weeks after the completion of therapy. Toxicities were based on CTCAE 4.0. Results: The median age at original diagnosis and at recurrence was 49.8 years and 60.2 years, respectively. The median time between the two RT courses was 10.2 (0.7-20.2) years. The median follow-up time was 18.7 (2.5-35.2) months. No local failures were observed after re-irradiation. One patient developed distant metastasis and ultimately died. Grade 3-4 acute skin toxicity was observed in 5 (31.2%) patients. Four (25%) patients developed chest wall infections during or shortly (2 weeks) after re-irradiation. Late grade 3-4 fibrosis was observed in only 3 (18.8%) patients. Grade 5 toxicities were not observed. Hyperpigmentation was seen in 12 (75%) patients. Pneumonitis, telangiectasia, rib fracture, and lymphedema occurred in 2 (12.5%), 4 (25%), 1 (6.3%), and 1 (6.3%) patients, respectively. Conclusions: Re-irradiation with PBRT for recurrent breast cancer has acceptable toxicities. There was a high incidence of acute grade 3-4 skin toxicity and infections, which resolved, however, with skin care and antibiotics. Longer follow-up is needed to determine long-term clinical outcomes

    Evaluation of a new secondary dose calculation software for Gamma Knife radiosurgery

    Get PDF
    Current available secondary dose calculation software for Gamma Knife radiosurgery falls short in situations where the target is shallow in depth or when the patient is positioned with a gamma angle other than 90°. In this work, we evaluate a new secondary calculation software which utilizes an innovative method to handle nonstandard gamma angles and image thresholding to render the skull for dose calculation. 800 treatment targets previously treated with our GammaKnife Icon system were imported from our treatment planning system (GammaPlan 11.0.3) and a secondary dose calculation was conducted. The agreement between the new calculations and the TPS were recorded and compared to the original secondary dose calculation agreement with the TPS using a Wilcoxon Signed Rank Test. Further comparisons using a Mann-Whitney test were made for targets treated at a 90° gamma angle against those treated with either a 70 or 110 gamma angle for both the new and commercial secondary dose calculation systems. Correlations between dose deviations from the treatment planning system against average target depth were evaluated using a Kendall\u27s Tau correlation test for both programs. The Wilcoxon Signed Rank Test indicated a significant difference in the agreement between the two secondary calculations and the TPS, with a P-value \u3c 0.0001. With respect to patients treated at nonstandard gamma angles, the new software was largely independent of patient setup, while the commercial software showed a significant dependence (P-value \u3c 0.0001). The new secondary dose calculation software showed a moderate correlation with calculation depth, while the commercial software showed a weak correlation (Tau = -.322 and Tau = -.217 respectively). Overall, the new secondary software has better agreement with the TPS than the commercially available secondary calculation software over a range of diverse treatment geometries

    Filmless quality assurance of a Leksell Gamma Knife® Icon™

    No full text
    PURPOSE: The annual quality assurance (QA) of Leksell Gamma Knife METHODS: Annual QA tests for a LGK Iconâ„¢ system were performed using both film-based and filmless techniques. Output calibration, relative output factors (ROF), radiation profiles, sector uniformity/source counting, and verification of the unit center point (UCP) and radiation focal point (RFP) coincidence tests were performed. Radiochromic films, two ionization chambers, and a synthetic diamond detector were used for the measurements. Results were compared and verified with the treatment planning system (TPS). RESULTS: The measured dose rate of the LGK Icon was within 0.4% of the TPS value set at the time of commissioning using an ionization chamber. ROF for the 8 and 4-mm collimators were found to be 0.3% and 1.8% different from TPS values using the MicroDiamond detector and 2.6% and 1.9% different for film, respectively. Excellent agreement was found between TPS and measured dose profiles using the MicroDiamond detector which was within 1%/1 mm vs 2%/1 mm for film. Sector uniformity was found to be within 1% for all eight sectors measured using an ionization chamber. Verification of UCP and RFP coincidence using the MicroDiamond detector and pinprick film test was within 0.3 mm at isocenter for both. CONCLUSION: The annual QA of a LGK Icon was successfully performed by employing filmless techniques. Comparable results were obtained using radiochromic films. Utilizing active detectors instead of films simplifies the QA process and saves time without loss of accuracy

    Internal dose escalation associated with increased local control for melanoma brain metastases treated with stereotactic radiosurgery

    No full text
    OBJECTIVE The internal high-dose volume varies widely for a given prescribed dose during stereotactic radiosurgery (SRS) to treat brain metastases (BMs). This may be altered during treatment planning, and the authors have previously shown that this improves local control (LC) for non.small cell lung cancer BMs without increasing toxicity. Here, they seek to identify potentially actionable dosimetric predictors of LC after SRS for melanoma BM. METHODS The records of patients with unresected melanoma BM treated with single-fraction Gamma Knife RS between 2006 and 2017 were reviewed. LC was assessed on a per-lesion basis, defined as stability or a decrease in lesion size. Outcome-oriented approaches were utilized to determine optimal dichotomization for dosimetric variables relative to LC. Univariable and multivariable Cox regression analysis was implemented to evaluate the impact of collected parameters on LC. RESULTS Two hundred eighty-seven melanoma BMs in 79 patients were identified. The median age was 56 years (range 31.86 years). The median follow-up was 7.6 months (range 0.5.81.6 months), and the median survival was 9.3 months (range 1.3.81.6 months). Lesions were optimally stratified by volume receiving at least 30 Gy (V30) greater than or equal to versus less than 25%. V30 was . and \u3c 25% in 147 and 140 lesions, respectively. For all patients, 1-year LC was 83% versus 66% for V30 . and \u3c 25%, respectively (p = 0.001). Stratifying by volume, lesions 2 cm or less (n = 215) had 1-year LC of 82% versus 70% (p = 0.013) for V30 . and \u3c 25%, respectively. Lesions \u3e 2 to 3 cm (n = 32) had 1-year LC of 100% versus 43% (p = 0.214) for V30 . and \u3c 25%, respectively. V30 was still predictive of LC even after controlling for the use of immunotherapy and targeted therapy. Radionecrosis occurred in 2.8% of lesions and was not significantly associated with V30. CONCLUSIONS For a given prescription dose, an increased internal high-dose volume, as indicated by measures such as V30 . 25%, is associated with improved LC but not increased toxicity in single-fraction SRS for melanoma BM. Internal dose escalation is an independent predictor of improved LC even in patients receiving immunotherapy and/or targeted therapy. This represents a dosimetric parameter that is actionable at the time of treatment planning and warrants further evaluation

    Internal dose escalation associated with increased local control for melanoma brain metastases treated with stereotactic radiosurgery

    No full text
    OBJECTIVE The internal high-dose volume varies widely for a given prescribed dose during stereotactic radiosurgery (SRS) to treat brain metastases (BMs). This may be altered during treatment planning, and the authors have previously shown that this improves local control (LC) for non.small cell lung cancer BMs without increasing toxicity. Here, they seek to identify potentially actionable dosimetric predictors of LC after SRS for melanoma BM. METHODS The records of patients with unresected melanoma BM treated with single-fraction Gamma Knife RS between 2006 and 2017 were reviewed. LC was assessed on a per-lesion basis, defined as stability or a decrease in lesion size. Outcome-oriented approaches were utilized to determine optimal dichotomization for dosimetric variables relative to LC. Univariable and multivariable Cox regression analysis was implemented to evaluate the impact of collected parameters on LC. RESULTS Two hundred eighty-seven melanoma BMs in 79 patients were identified. The median age was 56 years (range 31.86 years). The median follow-up was 7.6 months (range 0.5.81.6 months), and the median survival was 9.3 months (range 1.3.81.6 months). Lesions were optimally stratified by volume receiving at least 30 Gy (V30) greater than or equal to versus less than 25%. V30 was . and \u3c 25% in 147 and 140 lesions, respectively. For all patients, 1-year LC was 83% versus 66% for V30 . and \u3c 25%, respectively (p = 0.001). Stratifying by volume, lesions 2 cm or less (n = 215) had 1-year LC of 82% versus 70% (p = 0.013) for V30 . and \u3c 25%, respectively. Lesions \u3e 2 to 3 cm (n = 32) had 1-year LC of 100% versus 43% (p = 0.214) for V30 . and \u3c 25%, respectively. V30 was still predictive of LC even after controlling for the use of immunotherapy and targeted therapy. Radionecrosis occurred in 2.8% of lesions and was not significantly associated with V30. CONCLUSIONS For a given prescription dose, an increased internal high-dose volume, as indicated by measures such as V30 . 25%, is associated with improved LC but not increased toxicity in single-fraction SRS for melanoma BM. Internal dose escalation is an independent predictor of improved LC even in patients receiving immunotherapy and/or targeted therapy. This represents a dosimetric parameter that is actionable at the time of treatment planning and warrants further evaluation
    corecore