156 research outputs found
Higgs Physics at the Large Hadron Collider
In this talk I will begin by summarising the importance of the Higgs physics
studies at the LHC. I will then give a short description of the pre-LHC
constraints on the Higgs mass and the theoretical predictions for the LHC along
with a discussion of the current experimental results, ending with prospects in
the near future at the LHC. In addition to the material covered in the
presented talk, I have included in the writeup, a critical appraisal of the
theoretical uncertainties in the Higgs cross-sections at the Tevatron as well
as a discussion of the recent experimental results from the LHC which have
become available since the time of the workshop.Comment: LateX, 12 figures, 15 pages, Presented at the XIth Workshop on High
Energy Physics Phenomenology, 2010, Ahmedabad, Indi
Probing top charged-Higgs production using top polarization at the Large Hadron Collider
We study single top production in association with a charged Higgs in the
type II two Higgs doublet model at the Large Hadron Collider. The polarization
of the top, reflected in the angular distributions of its decay products, can
be a sensitive probe of new physics in its production. We present theoretically
expected polarizations of the top for top charged-Higgs production, which is
significantly different from that in the closely related process of t-W
production in the Standard Model. We then show that an azimuthal symmetry,
constructed from the decay lepton angular distribution in the laboratory frame,
is a sensitive probe of top polarization and can be used to constrain
parameters involved in top charged-Higgs production.Comment: 22 pages, 18 Figures, Discussions about backgrounds and NLO
corrections added, figures modified, references added, Version published in
JHE
On measurement of top polarization as a probe of production mechanisms at the LHC
In this note we demonstrate the use of top polarization in the study of resonances at the LHC, in the possible case where the dynamics implies
a non-zero top polarization. As a probe of top polarization we construct an
asymmetry in the decay-lepton azimuthal angle distribution (corresponding to
the sign of ) in the laboratory. The asymmetry is non-vanishing
even for a symmetric collider like the LHC, where a positive axis is not
uniquely defined. The angular distribution of the leptons has the advantage of
being a faithful top-spin analyzer, unaffected by possible anomalous
couplings, to linear order. We study, for purposes of demonstration, the case
of a as might exist in the little Higgs models. We identify kinematic cuts
which ensure that our asymmetry reflects the polarization in sign and
magnitude. We investigate possibilities at the LHC with two energy options:
TeV and TeV, as well as at the Tevatron. At the
LHC the model predicts net top quark polarization of the order of a few per
cent for GeV, being as high as for a smaller mass
of the of GeV and for the largest allowed coupling in the model, the
values being higher for the TeV option. These polarizations translate to a
deviation from the standard-model value of azimuthal asymmetry of up to about
() for () TeV LHC, whereas for the Tevatron, values as high as
are attained. For the TeV LHC with an integrated luminosity of 10
fb, these numbers translate into a sensitivity over a large
part of the range GeV.Comment: 28 page, LaTeX, requires JHEP style file, 12 figures. Typos corrected
and references adde
Probing anomalous tbW couplings in single-top production using top polarization at the Large Hadron Collider
We study the sensitivity of the Large Hadron Collider (LHC) to anomalous tbW
couplings in single-top production in association with a W^- boson followed by
semileptonic decay of the top. We calculate top polarization and the effects of
these anomalous couplings to it at two centre-of-mass (cm) energies of 7 TeV
and 14 TeV. As a measure of top polarization, we look at various laboratory
frame distributions of its decay products, viz., lepton angular and energy
distributions and b-quark angular distributions, without requiring
reconstruction of the rest frame of the top, and study the effect of anomalous
couplings on these distributions. We construct certain asymmetries to study the
sensitivity of these distributions to anomalous tbW couplings. We find that
1\sigma limits on real and imaginary parts of the dominant anomalous coupling
Ref_{2R} which may be obtained by utilizing these asymmetries at the LHC with
cm energy of 14 TeV and an integrated luminosity of 10 fb^{-1} will be
significantly better than the expectations from direct measurements of cross
sections and some other variables at the LHC and over an order of magnitude
better than the indirect limits.Comment: 25 pages, 34 figure
Dijet resonances, widths and all that
The search for heavy resonances in the dijet channel is part of the on-going
physics programme, both at the Tevatron and at the LHC. Lower limits have been
placed on the masses of dijet resonances predicted in a wide variety of models.
However, across experiments, the search strategy assumes that the effect of the
new particles is well-approximated by on-shell production and subsequent decay
into a pair of jets. We examine the impact of off-shell effects on such
searches, particularly for strongly interacting resonances.Comment: Version published in JHE
Does the `Higgs' have Spin Zero?
The Higgs boson is predicted to have spin zero. The ATLAS and CMS experiments
have recently reported of an excess of events with mass ~ 125 GeV that has some
of the characteristics expected for a Higgs boson. We address the questions
whether there is already any evidence that this excess has spin zero, and how
this possibility could be confirmed in the near future. The excess observed in
the gamma gamma final state could not have spin one, leaving zero and two as
open possibilities. We calculate the angular distribution of gamma gamma pairs
from the decays of a spin-two boson produced in gluon-gluon collisions, showing
that is unique and distinct from the spin-zero case. We also calculate the
distributions for lepton pairs that would be produced in the W W* decays of a
spin-two boson, which are very different from those in Higgs decays, and note
that the kinematics of the event selection used to produce the excess observed
in the W W* final state have reduced efficiency for spin two.Comment: 22 pages, 22 figures, Version accepted for publication in JHEP,
includes additional plots of dilepton mass distribution
A Fast Track towards the `Higgs' Spin and Parity
The LHC experiments ATLAS and CMS have discovered a new boson that resembles
the long-sought Higgs boson: it cannot have spin one, and has couplings to
other particles that increase with their masses, but the spin and parity remain
to be determined. We show here that the `Higgs' + gauge boson invariant-mass
distribution in `Higgs'-strahlung events at the Tevatron or the LHC would be
very different under the J^P = 0+, 0- and 2+ hypotheses, and could provide a
fast-track indicator of the `Higgs' spin and parity. Our analysis is based on
simulations of the experimental event selections and cuts using PYTHIA and
Delphes, and incorporates statistical samples of `toy' experiments.Comment: 18 pages, 9 pdf figure
Learning Interpretable Rules for Multi-label Classification
Multi-label classification (MLC) is a supervised learning problem in which,
contrary to standard multiclass classification, an instance can be associated
with several class labels simultaneously. In this chapter, we advocate a
rule-based approach to multi-label classification. Rule learning algorithms are
often employed when one is not only interested in accurate predictions, but
also requires an interpretable theory that can be understood, analyzed, and
qualitatively evaluated by domain experts. Ideally, by revealing patterns and
regularities contained in the data, a rule-based theory yields new insights in
the application domain. Recently, several authors have started to investigate
how rule-based models can be used for modeling multi-label data. Discussing
this task in detail, we highlight some of the problems that make rule learning
considerably more challenging for MLC than for conventional classification.
While mainly focusing on our own previous work, we also provide a short
overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models
in Computer Vision and Machine Learning. The Springer Series on Challenges in
Machine Learning. Springer (2018). See
http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further
informatio
The Impact of a 4th Generation on Mixing and CP Violation in the Charm System
We study D0-D0 mixing in the presence of a fourth generation of quarks. In
particular, we calculate the size of the allowed CP violation which is found at
the observable level well beyond anything possible with CKM dynamics. We
calculate the semileptonic asymmetry a_SL and the mixing induced CP asymmetry
eta_fS_f which are correlated with each other. We also investigate the
correlation of eta_fS_f with a number of prominent observables in other mesonic
systems like epsilon'/epsilon, Br(K_L -> pi0 nu nu), Br(K+ -> pi+ nu nu),
Br(B_s ->mu+ mu-), Br(B_d -> mu+ mu-) and finally S_psi phi in the B_s system.
We identify a clear pattern of flavour and CP violation predicted by the SM4
model: While simultaneous large 4G effects in the K and D systems are possible,
accompanying large NP effects in the B_d system are disfavoured. However this
behaviour is not as pronounced as found for the LHT and RSc models. In contrast
to this, sizeable CP violating effects in the B_s system are possible unless
extreme effects in eta_fS_f are found, and Br(B_s ->mu+ mu-) can be strongly
enhanced regardless of the situation in the D system. We find that, on the
other hand, S_psi phi > 0.2 combined with the measured epsilon'/epsilon
significantly diminishes 4G effects within the D system.Comment: 22 pages, 23 figures, v2 (references added
Missing Momentum Reconstruction and Spin Measurements at Hadron Colliders
We study methods for reconstructing the momenta of invisible particles in
cascade decay chains at hadron colliders. We focus on scenarios, such as SUSY
and UED, in which new physics particles are pair produced. Their subsequent
decays lead to two decay chains ending with neutral stable particles escaping
detection. Assuming that the masses of the decaying particles are already
measured, we obtain the momenta by imposing the mass-shell constraints. Using
this information, we develop techniques of determining spins of particles in
theories beyond the standard model. Unlike the methods relying on Lorentz
invariant variables, this method can be used to determine the spin of the
particle which initiates the decay chain. We present two complementary ways of
applying our method by using more inclusive variables relying on kinematic
information from one decay chain, as well as constructing correlation variables
based on the kinematics of both decay chains in the same event.Comment: Version to appear in JHE
- …