13 research outputs found

    Ultra low background Micromegas detectors for BabyIAXO solar axion search

    Full text link
    The International AXion Observatory (IAXO) is a large scale axion helioscope that will look for axions and axion-like particles produced in the Sun with unprecedented sensitivity. BabyIAXO is an intermediate experimental stage that will be hosted at DESY (Germany) and that will test all IAXO subsystems serving as a prototype for IAXO but at the same time as a fully-fledged helioscope with potential for discovery. One of the crucial components of the project is the ultra-low background X-ray detectors that will image the X-ray photons produced by axion conversion in the experiment. The baseline detection technology for this purpose are Micromegas (Microbulk) detectors. We will show the quest and the strategy to attain the very challenging levels of background targeted for BabyIAXO that need a multi-approach strategy coming from ground measurements, screening campaigns of components of the detector, underground measurements, background models, in-situ background measurements as well as powerful rejection algorithms. First results from the commissioning of the BabyIAXO prototype will be shown.Comment: 4 pages, 2 figures, submitted for the proceedings of the International Conference on Micro Pattern Gaseous Detectors, December 2022, Israe

    Background discrimination with a Micromegas detector prototype and veto system for BabyIAXO

    No full text
    International audienceIn this paper we present measurements performed with a Micromegas X-ray detector setup. The detector is a prototype in the context of the BabyIAXO helioscope, which is under construction to search for an emission of the hypothetical axion particle from the sun. An important component of such a helioscope is a low background X-ray detector with a high efficiency in the 1-10 keV energy range. The goal of the measurement was to study techniques for background discrimination. In addition to common techniques we used a multi-layer veto system designed to tag cosmogenic neutron background. Over an effective time of 52 days, a background level of 8.6×107counts keV1cm2s18.6 \times 10^{-7}\,\text{counts keV}^{-1}\,\text{cm}^{-2} \, \text{s}^{-1} was reached in a laboratory at above ground level. This is the lowest background level achieved at surface level. In this paper we present the experimental setup, show simulations of the neutron-induced background, and demonstrate the process to identify background signals in the data. Finally, prospects to reach lower background levels down to 107counts keV1cm2s110^{-7} \, \text{counts keV}^{-1} \, \text{cm}^{-2} \, \text{s}^{-1} will be discussed

    Ultra low background Micromegas detectors for BabyIAXO solar axion search

    No full text
    International audienceThe International AXion Observatory (IAXO) is a large scale axion helioscope that will look for axions and axion-like particles produced in the Sun with unprecedented sensitivity. BabyIAXO is an intermediate experimental stage that will be hosted at DESY (Germany) and that will test all IAXO subsystems serving as a prototype for IAXO but at the same time as a fully-fledged helioscope with potential for discovery. One of the crucial components of the project is the ultra-low background X-ray detectors that will image the X-ray photons produced by axion conversion in the experiment. The baseline detection technology for this purpose are Micromegas (Microbulk) detectors. We will show the quest and the strategy to attain the very challenging levels of background targeted for BabyIAXO that need a multi-approach strategy coming from ground measurements, screening campaigns of components of the detector, underground measurements, background models, in-situ background measurements as well as powerful rejection algorithms. First results from the commissioning of the BabyIAXO prototype will be shown

    The sPHENIX Micromegas Outer Tracker

    No full text
    International audienceThe sPHENIX Time Projection Chamber Outer Tracker (TPOT) is a Micromegas based detector. It is a part of the sPHENIX experiment that aims to facilitate the calibration of the Time Projection Chamber, in particular the correction of the time-averaged and beam-induced distortions of the electron drift. This paper describes the detector mission, setup, construction, installation, commissioning and performance during the first year of sPHENIX data taking

    The large inner Micromegas modules for the Atlas Muon Spectrometer upgrade: Construction, quality control and characterization

    No full text
    International audienceThe steadily increasing luminosity of the LHC requires an upgrade with high-rate and high-resolution detector technology for the inner end cap of the ATLAS muon spectrometer: the New Small Wheels (NSW). In order to achieve the goal of precision tracking at a hit rate of about 15 kHz/cm2 at the inner radius of the NSW, large area Micromegas quadruplets with 100µm spatial resolution per plane have been produced. IRFU, from the CEA research center of Saclay, is responsible for the production and validation of LM1 Micromegas modules. The construction, production, qualification and validation of the largest Micromegas detectors ever built are reported here. Performance results under cosmic muon characterization will also be discussed
    corecore