42 research outputs found

    Cell death in toxic nephropathies

    No full text
    Toxic nephropathies cause acute and chronic renal failure, primarily as a result of injury to renal tubular epithelium. There is a well-known capacity in the renal nephron for the synchronous occurrence of both apoptosis and necrosis in toxic nephropathies. This has engendered interest in the differing or complementary roles of these modes of cell death. Once thought to be mutually exclusive in incidence and morphologic and biochemical features, recent evidence in renal and other diseases indicates some blurring in the features of apoptosis and necrosis, particularly in the situations in which they are identified, in their molecular pathways, and in the role of inflammation in the processes. Definition of the heterogenic pathophysiologic response of the nephron should provide information useful for promoting the health of the kidney after injury, particularly in relation to controlling the extent and modalities of cell death via the associated renal-specific molecular features. This article indicates the significance and some problems of defining the types of cell death in toxic nephropathies

    Identification and quantification of apoptosis in the kidney using morphology, biochemical and molecular markers

    No full text
    Renal cell apoptosis is important in both physiological conditions such as normal renal development and pathological processes affecting the glomerular, vascular or tubulointerstitial compartments. Apoptosis may result in the detrimental loss of cells following many renal diseases or damaging changes, with significant loss of function. In contrast, apoptosis may control and limit inflammatory processes in both the acute and chronic phases of renal disease. Investigators interested in the presence of apoptotic cells in different forms of renal disease and development need methods to accurately determine the level of apoptosis within the kidney. Apoptosis is a gene-driven mode of cell death that may be identified by distinct morphological features, endonuclease-initiated DNA degradation, and by the involvement of specific apoptosis-regulating proteins. Many research papers that analyse the presence of apoptosis use the in situ terminal deoxyribonucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) assay that detects DNA strand breaks in situ in tissue sections. Localization of activated caspase-3 is now seen as an alternative to TUNEL. This review will discuss some methods of identifying apoptosis in the kidney, using both morphological and biochemical or molecular characteristics, and also discuss some of the pitfalls of entire reliance on biochemical means of apoptotic cell identification without some morphological checks and balances. Although there are some caveats to the methods for identifying apoptotic cells in renal disease, those investigators who take the time to undertake such analysis often gain insightful data that provide explanations for the disease or condition being studied

    Epstein-Barr virus-mediated protection against etoposide-induced apoptosis in BJA-B B cell lymphoma cells: role of Bcl-2 and caspase proteins

    No full text
    Epstein-Barr virus (EBV)-infected B cell lymphomas are resistant to apoptosis during cancer development and treatment with therapies. The molecular controls that determine why EBV infection causes apoptosis resistance need further definition. EBV-positive and EBV-negative BJA-B B cell lymphoma cell lines were used to compare the expression of selected apoptosis-regulating Bcl-2 and caspase proteins in EBV-related apoptosis resistance, after 8 hr or 18-24 hr etoposide treatment (80 muM). Apoptosis was quantified using morphology and verified with Hoechst 33258 nuclear stain and electron microscopy. Fluorescence activated cell sorting (FACS) was used to analyse effects on cell cycle of the EBV infection as well as etoposide treatment. Anti-apoptotic Bcl-2 and Bcl-XL, pro-apoptotic Bax, caspase-3 and caspase-9 expression and activation were analysed using Western immunoblots and densitometry. EBV-positive cultures had significantly lower levels of apoptosis in untreated and etoposide-treated cultures in comparison with EBV-negative cultures (p < 0.05). FACS analysis indicated a strong G2/M block in both cell sublines after etoposide treatment. Endogenous Bcl-2 was minimal in the EBV-negative cells in comparison with strong expression in EBV-positive cells. These levels did not alter with etoposide treatment. Bcl-XL was expressed endogenously in both cell lines and had reduced expression in EBV-negative cells after etoposide treatment. Bax showed no etoposide-induced alterations in expression. Pro-caspase-9 and -3 were seen in both EBV-positive and -negative cells. Etoposide induced cleavage of caspase-9 in both cell lines, with the EBV-positive cells having proportionally less cleavage product, in agreement with their lower levels of apoptosis. Caspase-3 cleavage occurred in the EBV-negative etoposide-treated cells but not in the EBV-positive cells. The results indicate that apoptosis resistance in EBV-infected B cell lymphomas is promoted by an inactive caspase-3 pathway and elevated expression of Bcl-2 that is not altered by etoposide drug treatment

    Apoptosis in the pathogenesis of renal disease with a focus on tubulointerstitial injury

    No full text
    Renal cell apoptosis is important not only in normal physiological conditions of the kidney but also in pathological processes. In normal renal development, it removes unwanted, damaged or harmful cells, and in the healthy adult kidney, it maintains cellular homeostasis by regulating the balance between cell proliferation and cell loss. The apoptotic process has now been described in the pathogenesis and prognosis of certain renal diseases with both beneficial and detrimental roles. It causes deletion of cells intrinsic to the kidney after, for example, toxic, ischaemic, immune or radiation damage, and this loss can be destructive and can cause significant reduction of renal function. In contrast, it can control and limit inflammatory processes in both the acute and chronic phases of renal disease. Information on the positive and negative outcomes of renal cell apoptosis, plus the thousands of publications on more general aspects of apoptosis mechanisms, have now presented real opportunities for the development of therapies that selectively delete or protect certain renal cell populations. This review will discuss some of the more general aspects of renal cell apoptosis and then concentrate on the detrimental or beneficial roles of apoptosis in the initiation, progression or resolution of selected, mainly tubulointerstitial, renal diseases

    Tumor size and postoperative kidney function following radical nephrectomy

    Get PDF
    Background: Chronic kidney disease (CKD) following nephrectomy for kidney tumors is common, and both patient and tumor characteristics may affect postoperative kidney function. Several studies have reported that surgery for large tumors is associated with a lower likelihood of postoperative CKD, but others have reported CKD to be more common before surgery in patients with large tumors. Objective: The aim of this study was to clarify inconsistencies in the literature regarding the prognostic significance of tumor size for postoperative kidney function. Study design and setting: We analyzed data from 944 kidney cancer patients managed with radical nephrectomy between January 2012 and December 2013, and 242 living kidney donors who underwent surgery between January 2011 and December 2014 in the Australian states of Queensland and Victoria. Multivariable logistic regression was used to assess the primary outcome of CKD upstaging. Structural equation modeling was used to evaluate causal models, to delineate the influence of patient and tumor characteristics on postoperative kidney function. Results: We determined that a significant interaction between age and tumor size (P=0.03) led to the observed inverse association between large tumor size and CKD upstaging, and was accentuated by other forms of selection bias. Subgrouping patients by age and tumor size demonstrated that all patients aged ≥65 years were at increased risk of CKD upstaging, regardless of tumor size. Risk of CKD upstaging was comparable between age-matched living donors and kidney cancer patients. Conclusion: Larger tumors are unlikely to confer a protective effect with respect to postoperative kidney function. The reason for the previously reported inconsistency is likely a combination of the analytical approach and selection bias
    corecore