117 research outputs found

    Development of Cd8α/α and Cd8α/β T Cells in Major Histocompatibility Complex Class I–Deficient Mice

    Get PDF
    Peripheral CD8+ T cells mainly use CD8α/β, and their development is mainly dependent on the major histocompatibility complex (MHC) class I proteins Kb and Db in H-2b mice. In this report, we have shown that the development of CD8α/β TCR-α/β cells in lymphoid organs as well as in intestinal intraepithelial lymphocytes (iIELs) is dependent on the MHC class I Kb and Db proteins. In contrast, TCR-α/β CD8α/α cells are found mainly in iIELs, and their numbers are unaffected in KbDb double knockout mice. Most of the TCR-γ/δ cells in the iIELs also bear CD8α/α, and they are also unaffected in KbDb −/− mice. In β2-microglobulin (β2m)-deficient mice, all of the TCR-α/β CD8α/α and CD8α/β T cells disappear, but TCR-γ/δ cells are unaffected by the absence of β2m

    Stem Cells in Infectious Diseases

    Get PDF

    Prostanoid receptor 2 signaling protects T helper 2 cells from BALB/c mice against activation-induced cell death

    Get PDF
    T helper 2 (Th2) cells play a central role in the progression of many diseases such as allergic airway inflammation, autoimmune diseases, and infections caused by intracellular pathogens. Consequently, animals such as BALB/c mice, which exhibit a propensity for generating Th2 responses, are susceptible to allergic airway inflammation, type-II autoimmune diseases, and various infections induced by intracellular pathogens, namely, Leishmania. In contrast, C3H/OuJ mice have a tendency for generating T helper 1 (Th1) responses and show resistance to these diseases. Here, we show that prostaglandin endoperoxide E2 selectively inhibits activation-induced cell death of Th2 cells by signaling through its receptor E-prostanoid receptor 2 (EP2). Consequently, Th2 cells derived from BALB/c mice expressed very high levels of EP2. On the other hand, Th2 cells derived from C3H/OuJ mice expressed very low levels of EP2, which failed to support the survival of Th2 cells. Furthermore, we found that this effect of EP2 on Th2 cells from BALB/c mice was executed by a granzyme B-mediated mechanism. EP2 belongs to a group of G-protein-coupled receptors that are amenable to therapeutic targeting. Our findings therefore identify EP2 as a promising target for small molecule-directed immunomodulation

    Mycobacterium tuberculosis subverts the TLR-2 - MyD88 pathway to facilitate its translocation into the cytosol

    Get PDF
    Mycobacterium tuberculosis (M.tb) has evolved mechanisms to evade its destruction in phagolysosomes, where it successfully survives and replicates within phagocytes. Recent studies have shown that virulent strains of M.tb can translocate from the phagosome into the cytosol of dendritic cells (DC). The molecular mechanisms by which virulent M.tb strains can escape the phagosome remain unknown. Here we show that the virulent M.tb strain H37Rv, but not the vaccine strain Bacille Calmette-Guérin (BCG), escapes from the phagolysosome and enters the cytosol by interfering with the TLR-2-MyD88 signaling pathway. Using H37Rv mutants, we further demonstrate that the region of difference-1 (RD-1) locus and ESAT-6, a gene within the RD-1 locus, play an important role in the capacity of M.tb to migrate from the phagosome to the cytosol of macrophages. H37Rv, BCG, H37RvΔRD1, and H37RvΔESAT6 were able to translocate to the cytosol in macrophages derived from TLR-2- and MyD88-deficient animals, whereas only virulent H37Rv was able to enter the cytosol in macrophages from wild type mice. Therefore, signaling through the TLR-2–MyD88 pathway in macrophages plays an important role in confining M.tb within phagolysomes. Virulent strains of M.tb have evolved mechanisms to subvert this pathway, thus facilitating their translocation to the cytosol and to escape the toxic microenvironment of the phagosome or phagolysosome

    Pivotal roles of CD8+ T cells restricted by MHC class I–like molecules in autoimmune diseases

    Get PDF
    Unlike T cells restricted by major histocompatibility complex (MHC) class Ia or class II molecules, T cells restricted by MHC class I–like molecules demonstrate properties of both innate and adaptive immunity and are therefore considered innate-like lymphocytes (ILLs). ILLs are believed to have immunoregulatory functions, but their roles in autoimmunity and defense against infections remain elusive. To study the properties of ILLs, we generated mice expressing only MHC class I–like molecules by crossing CIITA−/− with Kb−/−Db−/− mice. Surprisingly, these mice developed a lymphoproliferative syndrome and autoimmunity, most notably inflammatory bowel disease (IBD) and insulitis. The CD8+ ILLs in these mice exhibit a constitutively activated phenotype, and depletion of these cells abolished the autoimmune disorders. In addition, adoptive transfer of CD8+ ILLs from Kb−/−Db−/−CIITA−/− mice to Rag-1−/−pfn−/− mice also resulted in IBD and insulitis. These findings provide direct evidence that CD8+ ILLs are sufficient to initiate and mediate autoimmune diseases

    Understanding the host epigenetics in Mycobacterium tuberculosis infection

    Get PDF
    Epigenetics denotes to study the heritable changes occurred in the gene function without any changes in DNA sequence. These epigenetic changes are known to be governed by various factors viz. stress, infection, nutrients, drugs and toxicological agents etc. Recently, it has been identified that different microorganisms can cause the epigenetic changes in host. In this review we intend to address about the epigenetic changes occurred in host by Mycobacterium tuberculosis (M.tb) infection and then elaborate the current state of research about how Mtb. modulates host epigenome. M.tb induced epigenetic modifications which either leads to promote host defense or M.tb survival. Therefore, M.tb can be considered as potential modulator of host epigenome and consequently, these epigenetic changes can be beneficial or disastrous to M.tb. Currently, there is huge advances in sequencing technology and this can lead to a better understanding of the roles of epigenetics in the tuberculosis and other infectious diseases. Subsequently, therapeutic targeting of the epigenome can be potentially helpful in treatment of Mtb infection

    Transforming growth factor-β protein inversely regulates in vivo differentiation of interleukin-17 (IL-17)-producing CD4<SUP>+</SUP> and CD8<SUP>+</SUP> T Cells

    Get PDF
    TGF-β is a pleiotropic cytokine that predominantly exerts inhibitory functions in the immune system. Unexpectedly, the in vitro differentiation of both Th17 and Tc17 cells requires TGF-β. However, animals that are impaired in TGF-β signaling (TGF-βRIIDN mice) display multiorgan autoimmune disorders. Here we show that CD4+ T cells from TGF-βRIIDN mice are resistant to Th17 cell differentiation and, paradoxically, that CD8+ T cells from these animals spontaneously acquire an IL-17-producing phenotype. Neutralization of IL-17 or depletion of CD8+ T cells dramatically inhibited inflammation in TGF-βRIIDN mice. Therefore, the absence of TGF-β triggers spontaneous differentiation of IL-17-producing CD8+ T cells, suggesting that the in vivo and in vitro conditions that promote the differentiation of IL-17-producing CD8+ T cells are distinct

    N-acetylglucosamine (GlcNAc-inducible gene GIG2 is a novel component of GlcNAc metabolism in Candida albicans

    Get PDF
    Candida albicans is an opportunistic fungal pathogen that resides in the human body as a commensal and can turn pathogenic when the host is immunocompromised. Adaptation of C. albicans to host niche-specific conditions is important for the establishment of pathogenicity, where the ability of C. albicans to utilize multiple carbon sources provides additional flexibility. One alternative sugar is N-acetylglucosamine (GlcNAc), which is now established as an important carbon source for many pathogens and can also act as a signaling molecule. Although GlcNAc catabolism has been well studied in many pathogens, the importance of several enzymes involved in the formation of metabolic intermediates still remains elusive. In this context, microarray analysis was carried out to investigate the transcriptional responses induced by GlcNAc under different conditions. A novel gene that was highly upregulated immediately following the GlcNAc catabolic genes was identified and was named GIG2 (GlcNAc-induced gene 2). This gene is regulated in a manner distinct from that of the GlcNAc-induced genes described previously in that GlcNAc metabolism is essential for its induction. Furthermore, this gene is involved in the metabolism of N-acetylneuraminate (sialic acid), a molecule equally important for initial host-pathogen recognition. Mutant cells showed a considerable decrease in fungal burden in mouse kidneys and were hypersensitive to oxidative stress conditions. Since GIG2 is also present in many other fungal and enterobacterial genomes, targeted inhibition of its activity would offer insight into the treatment of candidiasis and other fungal or enterobacterial infections

    Small molecule-directed immunotherapy against recurrent infection by Mycobacterium tuberculosis

    Get PDF
    Tuberculosis remains the biggest infectious threat to humanity with one-third of the population infected and 1.4 million deaths and 8.7 million new cases annually. Current tuberculosis therapy is lengthy and consists of multiple antimicrobials, which causes poor compliance and high treatment dropout, resulting in the development of drug-resistant variants of tuberculosis. Therefore, alternate methods to treat tuberculosis are urgently needed. Mycobacterium tuberculosis evades host immune responses by inducing T helper (Th)2 and regulatory T (Treg) cell responses, which diminish protective Th1 responses. Here, we show that animals (Stat-6−/−CD4-TGFβRIIDN mice) that are unable to generate both Th2 cells and Tregs are highly resistant to M. tuberculosis infection. Furthermore, simultaneous inhibition of these two subsets of Th cells by therapeutic compounds dramatically reduced bacterial burden in different organs. This treatment was associated with the generation of protective Th1 immune responses. As these therapeutic agents are not directed to the harbored organisms, they should avoid the risk of promoting the development of drug-resistant M. tuberculosis variants
    • …
    corecore