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Abstract
Epigenetics denotes to study the heritable changes occurred in 
the gene function without any changes in DNA sequence. These 
epigenetic changes are known to be governed by various factors 
viz. stress, infection, nutrients, drugs and toxicological agents etc. 
Recently, it has been identified that different microorganisms can 
cause the epigenetic changes in host. In this review we intend 
to address about the epigenetic changes occurred in host by 
Mycobacterium tuberculosis (M.tb) infection and then elaborate 
the current state of research about how Mtb. modulates host 
epigenome. M.tb induced epigenetic modifications which either 
leads to promote host defense or M.tb survival. Therefore, M.tb 
can be considered as potential modulator of host epigenome 
and consequently, these epigenetic changes can be beneficial or 
disastrous to M.tb. Currently, there is huge advances in sequencing 
technology and this can lead to a better understanding of the roles 
of epigenetics in the tuberculosis and other infectious diseases. 
Subsequently, therapeutic targeting of the epigenome can be 
potentially helpful in treatment of Mtb infection. 
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Introduction
It was in 1942 when C.H. Waddington first coined the term 

epigenetics. According to him there is no direct relationship between 
a gene and its phenotype. He considered epigenetics as a part of 
development biology and in his opinion many times genotype and 
phenotype variations are not associated and phenotype differences do 
not necessarily involve change in genotype [1]. Since 40s epigenetics 
became the topic of interest among the scientific community. Now 
everybody wants to know that what goes on beyond the DNA and 
majority says that only epigenetics can address this question. In simple 
words, epigenetics can be defined as the science of stable and heritable 
changes occurred in cells without the change in DNA sequence for 

example induction, repression or silencing of gene expression. In 
addition, these epigenetic mechanisms are responsible for chromatin 
dynamics and which can further regulate diverse cellular processes 
like DNA repair, recombination and gene expression (Figure 1). It 
is interesting to note that sometimes these epigenetic changes can 
stably inherit through cell divisions. Furthermore, these changes 
can be erased or modified during differentiation, development and 
under different environmental stimuli. Such changes are mediated 

         

Figure 1: Various epigenetic mechanisms plays role in the regulation of gene 
expression.
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by various modifications on DNA and its associated histones. These 
modifications include methylation, acetylation, phosphylation and 
ubquitylation and all of these associated with chromatin dynamics and 
organization [2-10]. However all these modifications are not fulfilling 
the definition of epigenetics in terms of heritability? To follow this 
definition these modifications must be transmitted during the DNA 
replication [11,12]. Additionally, all these epigenetic processes play 
decisive role in development of cancer, where repression of tumor 
suppressor gene takes place. Also, various pathogens modulate 
these epigenetic processes to tackle host immune response and 
causes chronic illnesses [13-16]. Several line of evidences have 
established the role of pathogenic microbe on modulation of host 
transcriptional program by enforce changes in key cellular processes 
genes like genes responsible for immunity, apoptosis and survival 
etc. The fact is well established that most of the successful human 
pathogenic microorganisms were evolved in such a manner that they 
can effectively overcome against the host defense [17-22].  These 
successful human pathogenic microorganisms are able to hijack and 
reprogram host genome by targeting important cellular signaling 
pathways and transcription factors. For instance, many bacterial 
products can modify, activate, inhibit or degrade transcription 
factors and other key cellular proteins [18,21,23]. One such example 
of successful human pathogenic microorganisms is M.tb causative 
agent of Tuberculosis (TB) (Figure 1).

TB, a life threatening infectious diseases caused by the obligatory, 
aerobic bacillus M.tb is becoming a major global health problem [24]. It 
is a communicable disease transmitted via droplets produced through 
coughing and sneezing by individual having active tuberculosis. M.tb 
infection in healthy individual often remains latent or asymptomatic 
whereas active disease appears in the individual having suboptimal 
immune functioning.  However, in latent infection M.tb persists in 
dormant condition which can subsequently cause active tuberculosis 
in immune compromised individual. According to WHO 
recommendations M.tb infected individuals can be treated using four 
first line drugs: isoniazid, rifampicin, ethambutol and pyrazinamide 
for six months also known as ATT (Anti-Tuberculosis Therapy). 
However, therapeutic utility of these drugs is now jeopardized by 
emergence of MDR-M.tb, XDR-M.tb and TDR-M.tb strains [25-29].

Whereas treatment of MDR-TB requires more expensive 
and toxic drugs for about twenty months and which has much 
lower success rate. Recent report released by WHO estimated 450 
thousand people developed MDR-TB and 30% of which died due to 
tuberculosis. Additionally, it was observed that out of total MDR-TB 
cases about 10% develops into XDR-TB.

Globally, about one third of total population is infected with 
M.tb but out of that ~10% of these individuals will diagnosed for 
active TB. This is an important question to address that why not the 
all individual infected with M.tb develop clinical disease. After the 
inhalation of M.tb, human body can respond in three different ways 
either this infection will leads to active TB or human immune response 
clears TB bug from system or M.tb will undergo latency. Latent TB is 
hard to detect and it can relapse and cause active disease in different 
immune-compromised state of human. Altogether TB progression 
mainly depends on the ability of host immune response against M.tb. 
[30]. This immune response is affected by either internal factor as 
host genetic makeup or external factors which affect epigenetics of 
host like environment, nutrition and stress etc.

In this review, we contend that how M.tb modulates host 
epigenome to overcome the host defense and use this strategy to fight 
for its survival inside the host. After an overview about the epigenetic 
mechanisms governing chromatin dynamics, we explained that how 
these epigenetic mechanisms are targeted by M.tb to enforce change 
in host transcriptional program for its survival and persistence.

Types of Epigenetic Modifications
Eukaryotic chromatin is a complex structure which comprises 

of DNA and histone proteins and to fit into the tight space of 
nucleus it organizes itself into a dynamic higher order structure 

[31]. Organization of these structures plays an important role in 
various nuclear processes like DNA replication, transcription, and 
recombination and DNA repair [5,32].

Several lines of investigations have suggested the presence of 
different level of chromatin organization. Starting from nucleosomes 
which consist of core histone octamers (H2A, H2B, H3 and H4) 
circled by 147 base pair DNA and linked to other nucleosome via 
linker histone (H1). In next level of chromatin organization the DNA 
complexed with histone forms a chromatin fiber (30nm) and which 
further condensed into compact chromatin. These higher order 
chromatin structure either forms euchromatin (transcriptionally 
active) or hetrochromatin (transcriptionally inactive). Formation of 
euchromatin and hetrochromatin is a dynamic process and tightly 
regulated by various remodeling and modifying mechanisms [33-36]. 
Altogether, chromatin structure is vitally responsible for various kind 
of nuclear processes outcome like gene expression, silencing, DNA 
replication, transcription, recombination, DNA repair and genome 
stability [37-40]. Histone modification acts as important epigenetic 
marks. Histone octamer present in nucleosomes can undergo various 
covalent additions of different chemical groups and called as post 
translational modifications (PTMs) of histone [41-46].

In addition to modifications of histone proteins, DNA 
methylation is a chemical modification occurs when C5 position of 
cytosine in CpG-rich regions of DNA (CpG island) is changed due 
to transfer of methyl group by DNA methytransferase (DNMTs) 
either to establish methylation (DNMT3a and DNMT3b) or to copy 
methylation pattern (DNMT1) to newly synthesized DNA during 
replication. DNA methylation is reversible by two independent 
mechanisms either passively during DNA replication when 5mC (5 
methyl Cytosine) is not copied or actively in DNA repair process and 
demethylation during chemical modification of 5mC [47-49].

Recently, whole mammal genome and transcriptome has been 
sequenced and it was observed that huge number of transcribed RNA 
is not translated into the protein which suggest about the presence 
of non-coding RNA (nc RNA) in the transcribed RNAs and these 
nc RNA plays a pivotal regulatory role in various cellular functions 
similar to histone modifications and DNA methylation. In 2001 nc 
RNA were identified which is also known as microRNA (miRNA) 
and compose a large family of small non-coding RNA viz., piwi-
interacting RNA (piRNA) , small interfering RNA (siRNA), small 
nucleolar RNA (snoRNA) and small nuclear RNA (snRNA). These 
miRNA target mRNA at a translational level by repressing gene 
expression and act as endogenous gene silencers. The genome of 
animals, plants, and viruses contains highly conserved miRNA. 
Recent reports suggest that miRNA might play a pivotal function in 
regulating aboutone third of mammalian genes [50-59].

M.tb Infection Alters Histone Modifications
Several studies have shown that certain infectious agents like 

Helicobacter pylori, Streptococcus bovis, Chlamydia pneumoniae, 
Campylobacter rectus, Epstein-Barr virus, hepatitis viruses, Human 
papilloma virus, polyomaviruses, etc. can contribute to the host 
epigenetic changes resulting in the onset and progression of some 
diseases, especially in malignancies. However these epigenetic 
modifications induced by these infectious agents in host cells are 
largely ill defined. Possibly, these infectious agents like viruses, bacteria 
and other parasitic microorganisms have a lot of complex epigenetic 
regulatory mechanisms, which may cause epigenetic deregulation in 
their respective hosts. As an obligate intracellular pathogen, M.tb has 
also developed numerous mechanisms of hijacking cellular processes 
to tackle against the host immune response. M.tb which also causes 
latent infection is undoubtly taking advantage from the epigenetic 
changes occurred in host after its infection. These changes make the 
M.tb friendly environment inside the host cells and favor its survival, 
growth and latency (Figure 2,3).

Histone modifications are divided into eight different 
classes of post-translational modification which have about 60 
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distinct modification sites viz. proline isomerization, arginine 
deimination, serine,glutamate poly-ADP ribosylation, lysine and 

arginine methylation, threonine and thyrosine phosphorylation, 
ubiquitination and sumolylation, and lysine acetylation and altogether 

         

Figure 2: Emergence of new phenotype due to change in DNA sequence (Genetics) or DNA/Histone modification/non coding RNAs (Epigenetics).

         

Figure 3: Along with host genetics, epigenetics plays an important role in Tuberculosis.
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cause the differences in dynamics and function of chromatin [5,41]. 
For instance, active chromatin is linked with the PTM in histone 
3 lysine 4 residue trimethylation (H3K4me3) whereas histone 3 
lysine 9 residue trimethylation (H3K9me3) is the representative of 
repressed chromatin [42,43]. All these covalent modifications of 
chromatin are guided by different enzymes. Some of these enzymes 
act as writers like kinases, histone methyltransferase (HMTs) and 
histone acetyltransferase (HATs) and others functions as erasers 
like phosphatase, histone demethylase (HDMs), histone deacetylase 
(HDACs) [44-46].  Histone tail acetylation by HATs is usually 
linked with activation of chromatin by increases the space between 
nucleosomes whereas deacetylation via HDACs leads to suppression 
of gene expression [40]. Both the epigenetic mechanism of writing 
and erasing on histones are indispensable for the proper regulation 
of gene expression and absolute homeostasis is required for these 
processes. Altogether these histone codes for gene regulation are 
complex in nature and works in synergy with various other epigenetic 
mechanisms which ultimately determine the outcome of gene activity. 
Furthermore, it will be important to look about the genome wide 
modification in histone codes after M.tb infection in the host cells. 
This process of maintaining the histone code is so beautifully followed 
by the cells that the same stimuli can induce writing on histone tails 
at one locus whereas erasers removes some residues from histone 
tails. Therefore, it will be worth to address that what governs histone 
modifying enzymes to such a precision so that they can modify a set 
of specific gene loci out of whole genome of cell (Figure 2).

To combat the attack of M.tb infection, natural killer cells 
and activated T cells secrete lot IFN-γ which induces the major 
histocompatibility complex class II (MHC class II) expression in 
numerous cell kinds [60-63]. Interaction of IFN-γ with its cognate 
receptor on cell surface activates Janus tyrosine kinase-signal 
transducer and activator of transcription (JAK -STAT1) signaling 
cascade and regulates the transcription of several genes including 
CIITA trans-activator. This trans-activator plays pivotal role in the 
transcription of the MHC class II complex genes [64]. However, M.tb 
is able to inhibit some of genes like HLA-DR, CD64 and CIITA which 
are induced by IFN-γ, despite activation of normal JAK -STAT1 
signaling cascade. Reports suggest that M.tb is modulating histone 
modifications and chromatin remodeling at specific promoter to 
inhibit the transcription of these immune genes [24,65]. The blocked 
of CIITA gene transcription is due to the histone deacetylation 
at the CIITA promoter and inhibition of SWI/SNF binding and 
conversely M.tb induces the binding of the transcriptional repressor 
C/EBP to CIITA promoter However the detailed mechanism for 
this process is not given but the author hypothesized that 19KDa 
protein induced prolonged TLR2 signaling can be responsible for 
the expression/activation/repression of some identified transcription 
factors therefore additional studies are required to gain further 
insights [63,66]. Similarly HLA-DR expression was inhibited in M.tb 
infected cells by impairing the histone acetylation, and recruitment of 
corepressor at the HLA-DR promoter [67]. Additional mechanisms 
are required to be determined to exactly understand that how M.tb 
induces the repressor recruitment to these promoter in a specific way.

A recent report concludes that optimal immune activation by 
CDC1551 (M.tb sensitive strain) is sufficient to clear it form host, 
however HN878 (M.tb resistant strain) can sub optimally induce 
immune activation and over expression of gene responsible for the 
host lipid metabolism and ultimately enables better intracellular 
survival of HN878 bacilli. From this study, it is oblivious that both 
strains of M.tb are behaving differentially and inducing or inhibiting 
different set of genes whereas the precise molecular details about these 
changes are still unclear. Further studies are needed to completely 
decipher about the epigenetic changes happening in host and M.tb 
which is making one strain sensitive and other as resistant [68].

M.tb Infection Modulates Non Coding RNAs 
Expression

The miRNAs have been shown to play decisive roles in 

development, differentiation, apoptosis, and oncogenesis [53,54]. 
Synthesis of miRNA occurs in nucleus as long primary transcripts 
(pri-miRNA) and has imperfect hairpin structures. Transcription of 
miRNA is majority mediated by RNA polymerase II (Pol II), however 
some are also transcribed by Pol III. Then with help of RNase III, 
Drosha and DGCR8 process this pri-miRNA into precursor miRNA 
(pre-miRNA). Subsequently, the RNAse III Dicer enzyme cooperates 
with other proteins and processes the pre-miRNA into a mature 
miRNA as well as a complementary fragment called as miRNA. 
This mature miRNA in combination of RNA-induced silencing 
complex (RISC) governs gene regulation processes [55-59]. Number 
of lines of investigation describes that miRNA are involved in the 
regulation of important cellular pathways, such as proliferation, cell 
death, angiogenesis, invasion and in chromatin structure dynamics 
and genome organization in nucleus which has added additional 
complexity in epigenetic mechanisms [60-62] (Figure 2).

MicroRNAs (miRNAs) are non-coding single stranded RNAs 
of approximately 22 nucleotides in length which are important 
component of epigenetic mechanisms and can specifically modulate 
gene expression. Considering the central role of miRNAs in 
development and disease, the authors in recent report measured by 
the levels of miRNA in the blood of TB patients.

In above mentioned study it was observed that, in comparison of 
control individual’s serum TB patient’s serum has 59 overexpressed 
miRNAs whereas 33 miRNAs were under-expressed which 
significantly concludes that miRNAs are playing important role 
in active TB. Authors hypothesized that the serum miRNAs can 
potentially be harvested as the novel biomarker for the diagnosis and 
evaluation of the status of TB [63]. A recent study describes about the 
role of miR115 in macrophages infected with BCG. The expression 
of miR115 is unregulated in macrophages infected with BCG and it 
reprograms diverse cellular signaling cascades in macrophages and 
implicates important role in pathogenesis and survival of tuberculosis 
[67].Interestingly, human macrophages after mycobacterial infection 
induce a specific modulation of miRNAs in macrophages [69]. In 
addition, BCG down-regulates miR-29 expression in, CD4+ T cells, 
CD8+ T cells and natural killer cells [70]. Altogether these findings 
opens a new possibility in illuminating the connection between M.tb 
infection and role of miRNAs, and further research is needed to find 
out more about this association.

M.tb Infection Modifies DNA Methylation
DNA methylation has huge role in various cellular processes like 

differentiation, development, reprogramming, gene silencing and 
induction of various diseases including cancer [49]. Methylation 
at CpG causes silencing effects on gene expression by preventing 
association of various transcription or DNA binding factors to their 
consensus binding sites present in CpG islands or by recruit co-
repressor to methylated CpG nucleotides and modify chromatin 
into repressive form. Majorly, methylation of DNA at enhancers or 
promoter region of gene causes transcriptional repression or silencing. 
However, in comparison to histone modification DNA methylation is 
quite stable epigenetic change and very hard to reversible and this 
physiological epigenetic process may lead to long term silencing of 
gene expression [48,49] (Figure 2).

In a recent finding it was observed that BCG mediated epigenetic 
reprogramming of innate immune cells confers the absolute survival 
in all BCG-vaccinated SCID mice in comparison of only one third 
survival in control SCID mice. The BCG vaccine is able to do so in 
mononuclear phagocytes via NOD2-mediated epigenetic change at 
the level of H3K4me3. In this row further insights are needed for 
understanding the epigenetic reprogramming of innate immunity 
during M.tb infection and use this understanding for designing 
the effective vaccine and adjuvants which can selectively induce 
epigenetic modifications to ultimately help to generate the effective 
memory response against M.tb [71].

Notably, recent studies have reported the dynamic nature of 
DNA methylation in dendritic cells (DCs) upon infection of M.tb. 
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therapeutic applications against TB. Furthermore, we can find some 
therapeutics agents which can revert different epigenetic processes 
and prevent active and latent TB. Altogether, this will open a new 
avenue in the research and development field of M.tb pathogenesis 
and epigenetic regulation. May be some day we can challenge M.tb in 
same way how it is challenging us today.
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Methylation profiles of DCs before and after M.tb infection showed 
significant differentially methylated regions (DMRs) in single-base 
pair resolution analyzed data. Further analysis showed that changes 
in methylation were largely observed at low CpG density regions and 
distal regulatory regions or enhancers rather in high CpG density 
regions and gene promoters. Interestingly, about one third of the 
genes with changed expression after M.tb infection have promoter 
or close proximity DMR. Altogether this report suggested the role of 
DNA methylation in M.tb infection [72].

Another study using human macrophages suggested the 
modulation in DNA methylation status after M.tb infection. Using 
Agilent Human CpG Island Microarray, authors found significant 
alterations in methylation levels of inflammatory genes in M.tb 
infected human macrophages. Substantial increase in methylation 
was observed at the promoter region of interleukin-17 receptor gene 
in comparison with other IL-17 family members and receptors in 
macrophages. Additionally, the change in methylation patterns in 
host depends on type of M.tb strain and host genotype. Authors also 
concluded that these signature DNA methylation profiles may be 
exploited to use for the diagnosis of M.tb infection clinically [73].

M.tb induced changes in methylation of histone and acetylation 
in histone is evident from a report suggesting the role of M.tb 6kDa, 
ESAT6 (early secreted antigen 6)  in reduction of IFN-γ- induced 
histone H3K4 methylation and CIITA pI locus histone acetylation 
in M.tb infected macrophages. In addition this report suggests that 
inhibition of type IV and type I CIITA expression is mediated by ESAT6 
via different signaling pathways. Inhibited expression of type IV CIITA 
was found to be Toll-like receptor-2 (TLR2) dependent, whereas type 
I CIITA expression inhibitionis TLR2independent. In conclusion, 
both of these mechanisms have capacity to do chromatin remodeling 
and induce the differential effects [74]. M.tb secreted Enhanced 
intracellular survival (Eis) protein plays important role in increased 
survival of Mycobacterium smegmatisin macrophages by acetylating 
the histone proteins [75]. Recently, Siddle et al. has assessed change in 
miRNA profile in human DCs infected with M.tb. Approximately, 40% 
of miRNAs were differentially expressed in miRNAs in M.tb infected 
DCs during analysis of genome wide expression profiling. The study 
further emphasized about the global role of miRNAs in M.tb infected 
cells and opens a new field in epigenetic research about the role of 
miRNAs in patho-physiology of TB. Furthermore additional studies 
are required to find out the detailed contributions of miRNAs in TB 
immunity, infection, disease and latency [76].

Different ethnic groups carry variations in the methylation 
pattern and status in the vitamin D receptor gene promoter CpG 
islands upon M.tb infection. Therefore, it can be extrapolated 
that M.tb susceptibility depends on the level of global methylation 
status and subsequently can be used for designing some strategies 
for early diagnosis of TB susceptibility in individuals [77]. Recent 
work explained that pathological over-expression of Matrix 
Metalloproteinases 1 (MMP-1) in TB is contributed by epigenetic 
mechanisms via histone acetylation. The report suggested that 
using inhibition of either HDAC or HAT enzymes blocked the M.tb 
induced MMP-1 expression in infected macrophages. Furthermore, 
M.tb infection reduced the expression of Class I HDACs whereas 
HDAC1 and 3expressions remained unaltered [78].

Future Directions
Human hosts are co-evolved with M.tb, which has given this 

bacterium the inimitable ability to exploit and survive in the human 
host. M.tb has unique strategies to modulate epigenetic mediators 
and repress host immune response genes. Recent research about M.tb 
induced epigenetic regulation in host opened new avenues on host 
M.tb epigenetics. Further understanding the function of epigenetics 
and its regulators in patho-physiology of tuberculosis is a challenging 
task. However determining the different epigenetic marks in 
chromatin after M.tb infection in various infected cells will aid us to 
unravel diverse mechanisms and strategies of M.tb for its survival. 
These investigations can provide us the opportunity to design 
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