295 research outputs found

    Pressure Dependence of Born Effective Charges, Dielectric Constant and Lattice Dynamics in SiC

    Full text link
    The pressure dependence of the Born effective charge, dielectric constant and zone-center LO and TO phonons have been determined for 3C3C-SiC by a linear response method based on the linearized augmented plane wave calculations within the local density approximation. The Born effective charges are found to increase nearly linearly with decreasing volume down to the smallest volume studied, V/V0=0.78V/V_0=0.78, corresponding to a pressure of about 0.8 Mbar. This seems to be in contradiction with the conclusion of the turnover behavior recently reported by Liu and Vohra [Phys.\ Rev.\ Lett.\ {\bf 72}, 4105 (1994)] for 6H6H-SiC. Reanalyzing their procedure to extract the pressure dependence of the Born effective charges, we suggest that the turnover behavior they obtained is due to approximations in the assumed pressure dependence of the dielectric constant Ρ∞\varepsilon_\infty, the use of a singular set of experimental data for the equation of state, and the uncertainty in measured phonon frequencies, especially at high pressure.Comment: 25 pages, revtex, 5 postscript figures appended, to be published in Phys. Rev.

    Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing

    Get PDF
    Β© 2020 The Author(s) Macaque monkeys are an important animal model where invasive investigations can lead to a better understanding of the cortical organization of primates including humans. However, the tools and methods for noninvasive image acquisition (e.g. MRI RF coils and pulse sequence protocols) and image data preprocessing have lagged behind those developed for humans. To resolve the structural and functional characteristics of the smaller macaque brain, high spatial, temporal, and angular resolutions combined with high signal-to-noise ratio are required to ensure good image quality. To address these challenges, we developed a macaque 24-channel receive coil for 3-T MRI with parallel imaging capabilities. This coil enables adaptation of the Human Connectome Project (HCP) image acquisition protocols to the in-vivo macaque brain. In addition, we adapted HCP preprocessing methods to the macaque brain, including spatial minimal preprocessing of structural, functional MRI (fMRI), and diffusion MRI (dMRI). The coil provides the necessary high signal-to-noise ratio and high efficiency in data acquisition, allowing four- and five-fold accelerations for dMRI and fMRI. Automated FreeSurfer segmentation of cortex, reconstruction of cortical surface, removal of artefacts and nuisance signals in fMRI, and distortion correction of dMRI all performed well, and the overall quality of basic neurobiological measures was comparable with those for the HCP. Analyses of functional connectivity in fMRI revealed high sensitivity as compared with those from publicly shared datasets. Tractography-based connectivity estimates correlated with tracer connectivity similarly to that achieved using ex-vivo dMRI. The resulting HCP-style in vivo macaque MRI data show considerable promise for analyzing cortical architecture and functional and structural connectivity using advanced methods that have previously only been available in studies of the human brain

    Morphological evidence for an invasion-independent metastasis pathway exists in multiple human cancers

    Get PDF
    BACKGROUND: We have previously described an alternative invasion-independent pathway of cancer metastasis in a murine mammary tumor model. This pathway is initiated by intravasation of tumor nests enveloped by endothelial cells of sinusoidal vasculature within the tumor. In this study, we examined whether evidence for the invasion-independent pathway of metastasis is present in human cancers. METHODS: Archival specimens of 10 common types of human cancers were examined for the presence of sinusoidal vasculature enveloping tumor nests and subsequently generated endothelial-covered tumor emboli in efferent veins. RESULTS: A percentage of tumor emboli in all cancers was found to be enveloped by endothelial cells, but these structures were particularly prevalent in renal cell carcinomas, hepatocellular carcinomas and follicular thyroid carcinomas. A common feature of the vasculature in these tumors was the presence of dilated sinusoid-like structures surrounding tumor nests. A high mean vascular area within tumors, an indication of sinusoidal vascular development, was significantly related to the presence of endothelial-covered tumor emboli. CONCLUSIONS: These results suggest that an invasion-independent metastatic pathway is possible in a wide variety of human cancers. Further investigation of this phenomenon may present new therapeutic strategies for the amelioration of cancer metastasis

    Evidence for Direct CP Violation in B0 -> K+- pi-+ Decays

    Full text link
    We report evidence for direct CP violation in the decay B0 -> K+-pi-+ with 253/fb of data collected with the Belle detector at the KEKB e+e- collider. Using 275 million B B_bar pairs we observe a B -> K+-pi-+ signal with 2140+-53 events. The measured CP violating asymmetry is Acp(K+-pi-+) = -0.101+-0.025 (stat)+-0.005 (syst), corresponding to a significance of 3.9 sigma including systematics. We also search for CP violation in the decays B+- -> K+-pi0 and B+- -> pi+-pi0. The measured CP violating asymmetries are Acp(K+-pi0) = 0.04+-0.05(stat)+-0.02(syst) and Acp(pi+-pi0) = -0.02+-0.10(stat)+-0.01(syst), corresponding to the intervals -0.05 < Acp(K+-pi0) < 0.13 and -0.18<Acp(pi+-pi0)<0.14 at 90% confidence level.Comment: 9 pages, 3 figures. submitted to Physical Review Letter

    Successful treatment of pediatric IgG4 related systemic disease with mycophenolate mofetil: case report and a review of the pediatric autoimmune pancreatitis literature

    Get PDF
    Autoimmune pancreatitis is frequently associated with elevated serum and tissue IgG4 levels in the adult population, but there are few reports of pediatric autoimmune pancreatitis, and even fewer reports of IgG4 related systemic disease in a pediatric population. The standard of care treatment in adults is systemic corticosteroids with resolution of symptoms in most cases; however, multiple courses of corticosteroids are occasionally required and some patients require long term corticosteroids. In these instances, steroid sparing disease modify treatments are in demand. We describe a 13-year-old girl with IgG4 related systemic disease who presented with chronic recurrent autoimmune pancreatitis resulting in surgical intervention for obstructive hyperbilirubinemia and chronic corticosteroid treatment. In addition, she developed fibrosing medianstinitis as part of her IgG4 related systemic disease. She was eventually successfully treated with mycophenolate mofetil allowing for discontinuation of corticosteroids. This is the first reported use of mycophenolate mofetil for IgG4 related pancreatitis. Although autoimmune pancreatitis as part of IgG4 related systemic disease is rarely reported in pediatrics, autoimmune pancreatitis is also characterized as idiopathic fibrosing pancreatitis. All pediatric autoimmune pancreatitis cases reported in the world medical literature were identified via a PUBMED search and are reviewed herein. Twelve reports of pediatric autoimmune pancreatitis were identified, most of which were treated with corticosteroids or surgical approaches. Most case reports failed to report IgG4 levels, so it remains unclear how commonly IgG4 related autoimmune pancreatitis occurs during childhood. Increased evaluation of IgG4 levels in patients with autoimmune pancreatitis may shed further light on the association of IgG4 with pancreatitis and the underlying pathophysiology

    Analysis of the anti-tumor effect of cetuximab using protein kinetics and mouse xenograft models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The binding of EGFR and its ligands leads to autophosphorylation of receptor tyrosine kinase as well as subsequent activation of signal transduction pathways that are involved in regulating cellular proliferation, differentiation, and survival. An EGFR inhibitor, cetuximab binds to EGFR and consequently blocks a variety of cellular processes. <it>KRAS</it>/<it>BRAF </it>mutations are known to be associated with a low response rate to cetuximab. In the present study, to clarify the anti-tumor mechanisms of cetuximab, we evaluated the <it>KRAS</it>/<it>BRAF </it>status, phosphorylation level of the EGFR pathway, and the tumor suppression effect in vivo, using a human colon cancer cell line HT29, which exhibited the highest EGFR expression in response to the cetuximab therapy among the 6 colorectal cancer cell lines tested.</p> <p>Findings</p> <p>The conventional growth suppression assay did not work efficiently with cetuximab. EGF, TGF-Ξ±, and IGF activated the EGFR/MAPK cell signaling pathway by initiating the phosphorylation of EGFR. Cetuximab partially inhibited the EGFR/MAPK pathway induced by EGF, TGF-Ξ±, and IGF. However, cetuximab exposure induced the EGFR, MEK, and ERK1/2 phosphorylation by itself. Mouse xenograft tumor growth was significantly inhibited by cetuximab and both cetuximab-treated and -untreated xenograft specimens exhibited phosphorylations of the EGFR pathway proteins.</p> <p>Conclusions</p> <p>We have confirmed that cetuximab inhibited the EGFR/MAPK pathway and reduced tumor growth in the xenografts while the remaining tumor showed EGFR pathway activation. These results suggest that: ( i ) The effect of cetuximab in growth signaling is not sufficient to induce complete growth suppression in vitro; ( ii ) time-course monitoring may be necessary to evaluate the effect of cetuximab because EGFR signaling is transmitted in a minute order; and ( iii ) cetuximab treatment may have cells acquired resistant selectively survived in the heterogeneous cancer population.</p

    bantam Is Required for Optic Lobe Development and Glial Cell Proliferation

    Get PDF
    microRNAs (miRNAs) are small, conserved, non-coding RNAs that contribute to the control of many different cellular processes, including cell fate specification and growth control. Drosophila bantam, a conserved miRNA, is involved in several functions, such as stimulating proliferation and inhibiting apoptosis in the wing disc. Here, we reported the detailed expression pattern of bantam in the developing optic lobe, and demonstrated a new, essential role in promoting proliferation of mitotic cells in the optic lobe, including stem cells and differentiated glial cells. Changes in bantam levels autonomously affected glial cell number and distribution, and non-autonomously affected photoreceptor neuron axon projection patterns. Furthermore, we showed that bantam promotes the proliferation of mitotically active glial cells and affects their distribution, largely through down regulation of the T-box transcription factor, optomotor-blind (omb, Flybase, bifid). Expression of omb can rescue the bantam phenotype, and restore the normal glial cell number and proper glial cell positioning in most Drosophila brains. These results suggest that bantam is critical for maintaining the stem cell pools in the outer proliferation center and glial precursor cell regions of the optic lobe, and that its expression in glial cells is crucial for their proliferation and distribution

    TonEBP/NFAT5 promotes obesity and insulin resistance by epigenetic suppression of white adipose tissue beiging

    Get PDF
    Tonicity-responsive enhancer binding protein (TonEBP or NFAT5) is a regulator of cellular adaptation to hypertonicity, macrophage activation and T-cell development. Here we report that TonEBP is an epigenetic regulator of thermogenesis and obesity. In mouse subcutaneous adipocytes, TonEBP expression increases &gt; 50-fold in response to high-fat diet (HFD) feeding. Mice with TonEBP haplo-deficiency or adipocyte-specific TonEBP deficiency are resistant to HFD-induced obesity and metabolic defects (hyperglycemia, hyperlipidemia, and hyperinsulinemia). They also display increased oxygen consumption, resistance to hypothermia, and beiging of subcutaneous fat tissues. TonEBP suppresses the promoter of beta 3-adrenoreceptor gene, a critical regulator of lipolysis and thermogenesis, in ex vivo and cultured adipocytes. This involves recruitment of DNMT1 DNA methylase and methylation of the promoter. In human subcutaneous adipocytes TonEBP expression displays a correlation with body mass index but an inverse correlation with beta 3-adrenoreceptor expression. Thus, TonEBP is an attractive therapeutic target for obesity, insulin resistance, and hyperlipidemia
    • …
    corecore