5 research outputs found

    Performance of the ESC 0/1-h and 0/3-h Algorithm for the Rapid Identification of Myocardial Infarction Without ST-Elevation in Patients With Diabetes

    Get PDF
    Patients with diabetes mellitus (DM) have elevated levels of high-sensitivity cardiac troponin (hs-cTn). We investigated the diagnostic performance of the European Society of Cardiology (ESC) algorithms to rule out or rule in acute myocardial infarction (AMI) without ST-elevation in patients with DM.; We prospectively enrolled 3,681 patients with suspected AMI and stratified those by the presence of DM. The ESC 0/1-h and 0/3-h algorithms were used to calculate negative and positive predictive values (NPV, PPV). In addition, alternative cutoffs were calculated and externally validated in 2,895 patients.; In total, 563 patients (15.3%) had DM, and 137 (24.3%) of these had AMI. When the ESC 0/1-h algorithm was used, the NPV was comparable in patients with and without DM (absolute difference [AD] -1.50 [95% CI -5.95, 2.96]). In contrast, the ESC 0/3-h algorithm resulted in a significantly lower NPV in patients with DM (AD -2.27 [95% CI -4.47, -0.07]). The diagnostic performance for rule-in of AMI (PPV) was comparable in both groups: 0/1-h (AD 6.59 [95% CI -19.53, 6.35]) and 0/3-h (AD 1.03 [95% CI -7.63, 9.7]). Alternative cutoffs increased the PPV in both algorithms significantly, while improvements in NPV were only subtle.; Application of the ESC 0/1-h algorithm revealed comparable safety to rule out AMI comparing patients with and without DM, while this was not observed with the ESC 0/3-h algorithm. Although alternative cutoffs might be helpful, patients with DM remain a high-risk population in whom identification of AMI is challenging and who require careful clinical evaluation

    High-sensitivity cardiac troponin I enhances preeclampsia prediction beyond maternal factors and the sFlt-1/PlGF ratio

    No full text
    BACKGROUND: Preeclampsia shares numerous risk factors with cardiovascular diseases. Here, we aimed to assess the potential utility of high-sensitivity cardiac troponin I (hs-cTnI) values during pregnancy in predicting preeclampsia occurrence. METHODS: This study measured hs-cTnI levels in 3721 blood samples of 2245 pregnant women from 4 international, prospective cohorts. Three analytical approaches were used: (1) a cross-sectional analysis of all women using a single blood sample, (2) a longitudinal analysis of hs-cTnI trajectories in women with multiple samples, and (3) analyses of prediction models incorporating hs-cTnI, maternal factors, and the sFlt-1 (soluble fms-like tyrosine kinase 1)/PlGF (placental growth factor) ratio. RESULTS: Women with hs-cTnI levels in the upper quarter had higher odds ratios for preeclampsia occurrence compared with women with levels in the lower quarter. Associations were driven by preterm preeclampsia (odds ratio, 5.78 [95% CI, 2.73-12.26]) and remained significant when using hs-cTnI as a continuous variable adjusted for confounders. Between-trimester hs-cTnI trajectories were independent of subsequent preeclampsia occurrence. A prediction model incorporating a practical hs-cTnI level of detection cutoff (=1.9 pg/mL) alongside maternal factors provided comparable performance with the sFlt-1/PlGF ratio. A comprehensive model including sFlt-1/PlGF, maternal factors, and hs-cTnI provided added value (cross-validated area under the receiver operator characteristic, 0.78 [95% CI, 0.73-0.82]) above the sFlt-1/PlGF ratio alone (cross-validated area under the receiver operator characteristic, 0.70 [95% CI, 0.65-0.76]; P=0.027). As assessed by likelihood ratio tests, the addition of hs-cTnI to each prediction model significantly improved the respective prediction model not incorporating hs-cTnI, particularly for preterm preeclampsia. Net reclassification improvement analyses indicated that incorporating hs-cTnI improved risk prediction predominantly by correctly reclassifying women with subsequent preeclampsia occurrence. CONCLUSIONS: These exploratory findings uncover a potential role for hs-cTnI as a complementary biomarker in the prediction of preeclampsia. After validation in prospective studies, hs-cTnI, alongside maternal factors, may either be considered as a substitute for angiogenic biomarkers in health care systems where they are sparce or unavailable, or as an enhancement to established prediction models using angiogenic markers

    Role of Copeptin and hs-cTnT to Discriminate AHF from Uncomplicated NSTE-ACS with Baseline Elevated hs-cTnT—A Derivation and External Validation Study

    No full text
    Background: In light of overlapping symptoms, discrimination between non-ST-elevation (NSTE) acute coronary syndrome (ACS) and acute heart failure (HF) is challenging, particularly in patients with equivocal clinical presentation for suspected ACS. We sought to evaluate the diagnostic and prognostic properties of copeptin in this scenario. Methods: Data from 1088 patients from a single-center observational registry were used to test the ability of serial high sensitivity cardiac troponin T (hs-cTnT)—compared to copeptin, or a combination of copeptin with hs-cTnT—to discriminate acute HF from uncomplicated non-ST-elevation myocardial infarction (NSTEMI) and to evaluate all-cause mortality after 365 days. Patients with STEMI, those with unstable angina and either normal or undetectable hs-cTnT concentrations were excluded. The findings were validated in an independent external NSTE-ACS cohort. Results: A total of 219 patients were included in the analysis. The final diagnosis was acute HF in 56 and NSTE-ACS in 163, with NSTEMI in 78 and unstable angina having stable elevation of hs-cTnT >ULN in 85. The rate of all-cause death at 1 year was 9.6% and occurred significantly more often in acute HF than in NSTE-ACS (15 vs. 6%, p < 0.001). In the test cohort, the area under the receiver operator curve (AUC) for the discrimination of acute HF vs. NSTE-ACS without HF was 0.725 (95% confidence interval [CI] 0.625–0.798) for copeptin and significantly higher than for hs-cTnT at 0 h (AUC = 0.460, 0.370–0.550) or at 3 h (AUC = 0.441, 0.343–0.538). Copeptin and hs-cTnT used either as continuous values or at cutoffs optimized to yield 90% specificity for acute HF were associated with significantly higher age- and sex-adjusted risk for all-cause mortality at 365 days. The findings from the test cohort were consistently replicated in the independent external NSTE-ACS validation cohort. Conclusions: High concentrations of copeptin in patients with suspected NSTE-ACS and equivocal clinical presentation suggest the presence of acute HF compared to uncomplicated NSTE-ACS and are associated with higher rates of all-cause death at 365 days
    corecore