39 research outputs found

    A Low-Mass Pre-Main-Sequence Eclipsing Binary in Lower Centaurus Crux Discovered with TESS

    Full text link
    We report the discovery of 2M1222-57 as a low-mass, pre-main-sequence (PMS) eclipsing binary (EB) in the Lower Centaurus Crux (LCC) association for which, using Gaia parallaxes and proper motions with a neural-net age estimator, we determine an age of 16.2±\pm2.2 Myr. The broadband spectral energy distribution (SED) shows clear excess at ~10 um indicative of a circumbinary disk, and new speckle-imaging observations reveal a faint, tertiary companion separated by ~100 AU. H-alpha emission is modulated on the orbital period, consistent with theoretical models of orbitally pulsed accretion streams reaching from the inner disk edge to the central stars. From a joint analysis of spectroscopically determined radial velocities and TESS light curves, together with additional tight constraints provided by the SED and the Gaia parallax, we measure masses for the eclipsing stars of 0.74 Msun and 0.67 Msun; radii of 0.98 Rsun and 0.94 Rsun; and effective temperatures of 3750 K and 3645 K. The masses and radii of both stars are measured to an accuracy of ~1%. The measured radii are inflated, and the temperatures suppressed, relative to predictions of standard PMS evolutionary models at the age of LCC; also, the Li abundances are ~2 dex less depleted than predicted by those models. However, models that account for the global and internal effects of surface magnetic fields are able to simultaneously reproduce the measured radii, temperatures, and Li abundances at an age of 17.0±\pm0.5 Myr. Altogether, the 2M1222-57 system presents very strong evidence that magnetic activity in young stars alters both their global properties and the physics of their interiors.Comment: 23 pages, 19 figures, accepted by Ap

    Visual Orbits & Alignments of Planet Hosting Binary Systems

    Full text link
    Roughly half of Solar-type planet hosts have stellar companions, so understanding how these binary companions affect the formation and evolution of planets is an important component to understanding planetary systems overall. Measuring the dynamical properties of planet host binaries enables a valuable test of planet formation in multi-star systems and requires knowledge of the binary orbital parameters. Using high resolution imaging, we have measured the relative astrometry and visual orbits of 13 binary systems where one of the stars is known to host a transiting exoplanet. Our results indicate that the mutual inclination between the orbits of the binary hosts and the transiting planets are well aligned. Our results for close binary systems (a<100 AU) complement past work for wide planet host binaries from Gaia.Comment: Accepted for publication in A

    Revised Properties and Dynamical History for the HD 17156 System

    Full text link
    From the thousands of known exoplanets, those that transit bright host stars provide the greatest accessibility toward detailed system characterization. The first known such planets were generally discovered using the radial velocity technique, then later found to transit. HD 17156b is particularly notable among these initial discoveries because it diverged from the typical hot Jupiter population, occupying a 21.2 day eccentric (e=0.68e = 0.68) orbit, offering preliminary insights into the evolution of planets in extreme orbits. Here we present new data for this system, including ground and space-based photometry, radial velocities, and speckle imaging, that further constrain the system properties and stellar/planetary multiplicity. These data include photometry from the Transiting Exoplanet Survey Satellite (TESS) that cover five transits of the known planet. We show that the system does not harbor any additional giant planets interior to 10 AU. The lack of stellar companions and the age of the system indicate that the eccentricity of the known planet may have resulted from a previous planet-planet scattering event. We provide the results from dynamical simulations that suggest possible properties of an additional planet that culminated in ejection from the system, leaving a legacy of the observed high eccentricity for HD 17156b.Comment: 15 pages, 7 figures, accepted for publication in the Astronomical Journa

    The NASA High-Resolution Speckle Interferometric Imaging Program: Validation and Characterization of Exoplanets and Their Stellar Hosts

    Get PDF
    Starting in 2008, NASA has provided the exoplanet community an observational program aimed at obtaining the highest resolution imaging available as part of its mission to validate and characterize exoplanets, as well as their stellar environments, in search of life in the Universe. Our current program uses speckle interferometry in the optical (320–1,000 nm) with new instruments on the 3.5-m WIYN and both 8-m Gemini telescopes. Starting with Kepler and K2 follow-up, we now support TESS and other space- and ground-based exoplanet related discovery and characterization projects. The importance of high-resolution imaging for exoplanet research comes via identification of nearby stellar companions that can dilute the transit signal and confound derived exoplanet and stellar parameters. Our observations therefore provide crucial information allowing accurate planet and stellar properties to be determined. Our community program obtains high-resolution imagery, reduces the data, and provides all final data products, without any exclusive use period, to the community via the Exoplanet Follow-Up Observation Program (ExoFOP) website maintained by the NASA Exoplanet Science Institute. This paper describes the need for high-resolution imaging and gives details of the speckle imaging program, highlighting some of the major scientific discoveries made along the way

    Revised Architecture and Two New Super-Earths in the HD 134606 Planetary System

    Get PDF
    © 2024. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Multiplanet systems exhibit a diversity of architectures that diverge from the solar system and contribute to the topic of exoplanet demographics. Radial velocity (RV) surveys form a crucial component of exoplanet surveys, as their long observational baselines allow for searches for more distant planetary orbits. This work provides a significantly revised architecture for the multiplanet system HD 134606 using both HARPS and UCLES RVs. We confirm the presence of previously reported planets b, c, and d with periods of 12.0897 − 0.0018 + 0.0019 , 58.947 − 0.054 + 0.056 , and 958.7 − 5.9 + 6.3 days and masses of 9.14 − 0.63 + 0.65 , 11.0 ± 1, and 44.5 ± 2.9 Earth masses, respectively, with the planet d orbit significantly revised to over double that originally reported. We report two newly detected super-Earths, e and f, with periods of 4.31943 − 0.00068 + 0.00075 and 26.9 − 0.017 + 0.019 days and masses of 2.31 − 0.35 + 0.36 and 5.52 − 0.73 + 0.74 Earth masses, respectively. In addition, we identify a linear trend in the RV time series, and the cause of this acceleration is deemed to be a newly detected massive companion with a very long orbital period. HD 134606 now displays four low-mass planets in a compact region near the star, one gas giant further out in the habitable zone, an additional companion in the outer regime, and a low-mass M dwarf stellar companion at large separation, making it an intriguing target for system formation/evolution studies. The location of planet d in the habitable zone proves to be an exciting candidate for future space-based direct imaging missions, whereas continued RV observations of this system are recommended for understanding the nature of the massive, long-period companion.Peer reviewe

    TESS Discovery of Twin Planets near 2:1 Resonance around Early M-Dwarf TOI 4342

    Full text link
    With data from the Transiting Exoplanet Survey Satellite (TESS), we showcase improvements to the MIT Quick-Look Pipeline (QLP) through the discovery and validation of a multi-planet system around M-dwarf TOI 4342 (Tmag=11.032T_{mag}=11.032, M=0.63MM_* = 0.63 M_\odot, R=0.60RR_* = 0.60 R_\odot, Teff=3900T_{eff} = 3900 K, d=61.54d = 61.54 pc). With updates to QLP, including a new multi-planet search, as well as faster cadence data from TESS' First Extended Mission, we discovered two sub-Neptunes (Rb=2.2660.038+0.038RR_b = 2.266_{-0.038}^{+0.038} R_\oplus and Rc=2.4150.040+0.043RR_c = 2.415_{-0.040}^{+0.043} R_\oplus; PbP_b = 5.538 days and PcP_c = 10.689 days) and validated them with ground-based photometry, spectra, and speckle imaging. Both planets notably have high transmission spectroscopy metrics (TSMs) of 36 and 32, making TOI 4342 one of the best systems for comparative atmospheric studies. This system demonstrates how improvements to QLP, along with faster cadence Full-Frame Images (FFIs), can lead to the discovery of new multi-planet systems.Comment: accepted for publication in A

    Three low-mass companions around aged stars discovered by TESS

    Get PDF
    We report the discovery of three transiting low-mass companions to aged stars: a brown dwarf (TOI-2336b) and two objects near the hydrogen burning mass limit (TOI-1608b and TOI-2521b). These three systems were first identified using data from the Transiting Exoplanet Survey Satellite (TESS). TOI-2336b has a radius of 1.05±0.04 RJ1.05\pm 0.04\ R_J, a mass of 69.9±2.3 MJ69.9\pm 2.3\ M_J and an orbital period of 7.71 days. TOI-1608b has a radius of 1.21±0.06 RJ1.21\pm 0.06\ R_J, a mass of 90.7±3.7 MJ90.7\pm 3.7\ M_J and an orbital period of 2.47 days. TOI-2521b has a radius of 1.01±0.04 RJ1.01\pm 0.04\ R_J, a mass of 77.5±3.3 MJ77.5\pm 3.3\ M_J and an orbital period of 5.56 days. We found all these low-mass companions are inflated. We fitted a relation between radius, mass and incident flux using the sample of known transiting brown dwarfs and low-mass M dwarfs. We found a positive correlation between the flux and the radius for brown dwarfs and for low-mass stars that is weaker than the correlation observed for giant planets.Comment: 20 pages, 13 figures; submitted to MNRA

    TESS Hunt for Young and Maturing Exoplanets (THYME) IX: a 27 Myr extended population of Lower-Centaurus Crux with a transiting two-planet system

    Get PDF
    We report the discovery and characterization of a nearby (~ 85 pc), older (27 +/- 3 Myr), distributed stellar population near Lower-Centaurus-Crux (LCC), initially identified by searching for stars co-moving with a candidate transiting planet from TESS (HD 109833; TOI 1097). We determine the association membership using Gaia kinematics, color-magnitude information, and rotation periods of candidate members. We measure it's age using isochrones, gyrochronology, and Li depletion. While the association is near known populations of LCC, we find that it is older than any previously found LCC sub-group (10-16 Myr), and distinct in both position and velocity. In addition to the candidate planets around HD 109833 the association contains four directly-imaged planetary-mass companions around 3 stars, YSES-1, YSES-2, and HD 95086, all of which were previously assigned membership in the younger LCC. Using the Notch pipeline, we identify a second candidate transiting planet around HD 109833. We use a suite of ground-based follow-up observations to validate the two transit signals as planetary in nature. HD 109833 b and c join the small but growing population of <100 Myr transiting planets from TESS. HD 109833 has a rotation period and Li abundance indicative of a young age (< 100 Myr), but a position and velocity on the outskirts of the new population, lower Li levels than similar members, and a CMD position below model predictions for 27 Myr. So, we cannot reject the possibility that HD 109833 is a young field star coincidentally nearby the population.Comment: 23 pages, 15 figures, Accepted for publication in A

    TOI-733 b -- a planet in the small-planet radius valley orbiting a Sun-like star

    Get PDF
    We report the discovery of a hot (TeqT_{\rm eq} \approx 1055 K) planet in the small planet radius valley transiting the Sun-like star TOI-733, as part of the KESPRINT follow-up program of TESS planets carried out with the HARPS spectrograph. TESS photometry from sectors 9 and 36 yields an orbital period of PorbP_{\rm orb} = 4.8847652.4e5+1.9e54.884765 _{ - 2.4e-5 } ^ { + 1.9e-5 } days and a radius of RpR_{\mathrm{p}} = 1.9920.090+0.0851.992 _{ - 0.090 } ^ { + 0.085 } RR_{\oplus}. Multi-dimensional Gaussian process modelling of the radial velocity measurements from HARPS and activity indicators, gives a semi-amplitude of KK = 2.23±0.262.23 \pm 0.26 m s1^{-1}, translating into a planet mass of MpM_{\mathrm{p}} = 5.720.68+0.705.72 _{ - 0.68 } ^ { + 0.70 } MM_{\oplus}. These parameters imply that the planet is of moderate density (ρp\rho_\mathrm{p} = 3.980.66+0.773.98 _{ - 0.66 } ^ { + 0.77 } g cm3^{-3}) and place it in the transition region between rocky and volatile-rich planets with H/He-dominated envelopes on the mass-radius diagram. Combining these with stellar parameters and abundances, we calculate planet interior and atmosphere models, which in turn suggest that TOI-733 b has a volatile-enriched, most likely secondary outer envelope, and may represent a highly irradiated ocean world - one of only a few such planets around G-type stars that are well-characterised.Comment: Accepted for publication in A&
    corecore