144 research outputs found

    The stereoselectivity and hydrolysis efficiency of recombinant d-hydantoinase from Vigna angularis against 5-benzylhydantoin derivatives with halogen and methyl substituents

    Get PDF
    The researches on d-hydantoinase activity and substrate specificity towards dihydropyrimidine and hydantoin derivatives have been carried out intensively over the last few decades. So far, the major efforts have focused on (R,S)-5-phenylhydantoin and (R,S)-5-(4-hydroxyphenyl)hydantoin, the most desirable d-hydantoinase substrates from pharmaceutical industry point of view. However, it was shown that d-hydantoinase is a substrate-dependent enzyme, and its activity and stereoselectivity towards 5-monosubstituted hydantoins varied significantly with the type of substrate and the source of the enzyme. The aim of this study was to estimate the substrate specificity of d-hydantoinase towards series of 5-benzylhydantoin derivatives with halogen and methyl substituents in the phenyl ring. The biotransformations were carried out by using commercial enzyme: immobilized, recombinant, cloned, and expressed in Escherichia colid-hydantoinase from Vigna angularis (rD-HYD). All reactions were monitored by capillary electrophoresis (CE), and the conversion yields were calculated. Additionally, enantiomeric ratios of the obtained d-phenylalanine derivatives were estimated by chiral high-performance liquid chromatography (HPLC). Interestingly, the differences in the activities of examined enzyme towards particular 5-benzylhydantoin derivatives were observed. CE was also shown as a promising method for monitoring the hydrolysis of new substrates by d-hydantoinase and further analyzing of enzyme substrate specificity

    The study of cellular cytotoxicity of argireline® - an anti-aging peptide

    Get PDF
    Argireline® is well know, innovative anti-aging product used in the cosmetic market. This short chain peptide is used as active ingredient in dermal ointment and creams. Argireline® prevents formation of skin lines and wrinkles in a very similar way to the botulinum toxin (Botox), inhibiting neurotransmitter release at the neuromuscular junction. Argireline® does not require under skin muscle injections and it is believed to be relatively safe. However, despite the fact that some toxicity data has been provided by the product manufacturer, there is an evident lack of reliable information about cytotoxicity of argireline® in the literature. The aim of the presented study was to estimate the antiproliferation effect of argireline® solution in several concentrations. The influence of argireline® on cellular proliferation was examined against: human embryonic kidney HEK-293 cell line, human neuroblastoma IMR-32 cell line, and human primary skin fibroblasts. Tests were performed using formazan-based cell proliferation assay: EZ4U, which allows to measure the efficiency of mitochondrial oxidative activity in living cells. The argireline® inhibitory concentration, IC50 values were calculated and the results were compared to the IC50 value of the reference compound: doxorubicin. In conclusion, the considered method resulted in dose-dependent argireline® anti-proliferation effects. However, the significant cytotoxicity of argireline® solution was observed under 18 to 10 000 fold higher concentrations (depending on cells that were examined) in comparison to doxorubicin

    Search for ABCB1 modulators among 2-amine-5-arylideneimidazolones as a new perspective to overcome cancer multidrug resistance

    Get PDF
    Multidrug resistance (MDR) is a severe problem in the treatment of cancer with overexpression of glycoprotein P (Pgp, ABCB1) as a reason for chemotherapy failure. A series of 14 novel 5-arylideneimidazolone derivatives containing the morpholine moiety, with respect to two different topologies (groups A and B), were designed and obtained in a three- or four-step synthesis, involving the Dimroth rearrangement. The new compounds were tested for their inhibition of the ABCB1 efflux pump in both sensitive (parental (PAR)) and ABCB1-overexpressing (MDR) T-lymphoma cancer cells in a rhodamine 123 accumulation assay. Their cytotoxic and antiproliferative effects were investigated by a thiazolyl blue tetrazolium bromide (MTT) assay. For active compounds, an insight into the mechanisms of action using either the luminescent Pgp-Glo™ Assay in vitro or docking studies to human Pgp was performed. The safety profile in vitro was examined. Structure–activity relationship (SAR) analysis was discussed. The most active compounds, representing both 2-substituted- (11) and Dimroth-rearranged 3-substituted (18) imidazolone topologies, displayed 1.38–1.46 fold stronger efflux pump inhibiting effects than reference verapamil and were significantly safer than doxorubicin in cell-based toxicity assays in the HEK-293 cell line. Results of mechanistic studies indicate that active imidazolones are substrates with increasing Pgp ATPase activity, and their dye-efflux inhibition via competitive action on the Pgp verapamil binding site was predicted in silico

    The search for new anticonvulsants in a group of (2,5-dioxopyrrolidin-1-yl)(phenyl)acetamides with hybrid structure - synthesis and in vivo/In vitro studies

    Get PDF
    Epilepsy belongs to the most common and debilitating neurological disorders with multifactorial pathophysiology and a high level of drug resistance. Therefore, with the aim of searching for new, more effective, and/or safer therapeutics, we discovered a focused series of original hybrid pyrrolidine-2,5-dione derivatives with potent anticonvulsant properties. We applied an optimized coupling reaction yielding several hybrid compounds that showed broad-spectrum activity in widely accepted animal seizure models, namely, the maximal electroshock (MES) test and the psychomotor 6 Hz (32 mA) seizure model in mice. The most potent anticonvulsant activity and favorable safety profile was demonstrated for compound 30 (median effective dose (ED50) MES = 45.6 mg/kg, ED50 6 Hz (32 mA) = 39.5 mg/kg, median toxic dose (TD50) (rotarod test) = 162.4 mg/kg). Anticonvulsant drugs often show activity in pain models, and compound 30 was also proven effective in the formalin test of tonic pain, the capsaicin-induced pain model, and the oxaliplatin (OXPT)-induced neuropathic pain model in mice. Our studies showed that the most plausible mechanism of action of 30 involves inhibition of calcium currents mediated by Cav1.2 (L-type) channels. Importantly, 30 revealed high metabolic stability on human liver microsomes, negligible hepatotoxicity, and relatively weak inhibition of CYP3A4, CYP2D6, and CYP2C9 isoforms of cytochrome P450, compared to reference compounds. The promising in vivo activity profile and drug-like properties of compound 30 make it an interesting candidate for further preclinical development

    Characterization of in vitro and in vivo metabolism of antazoline using liquid chromatography-tandem mass spectrometry

    Get PDF
    Antazoline (ANT) was recently shown to be an effective and safe antiarrhythmic drug in the termination of atrial fibrillation. However, the drug is still not listed in clinical guidelines. No data on ANT metabolism in humans is available. We used liquid chromatography coupled with tandem mass spectrometry to identify and characterize metabolites of ANT. We analyzed plasma of volunteers following a single intravenous administration of 100 mg of ANT mesylate and in in vitro cultures of human hepatocytes. We revealed that ANT was transformed into at least 15 metabolites and we investigated the role of cytochrome P450 isoforms. CYP2D6 was the main one involved in the fast metabolism of ANT. The biotransformation of ANT by CYP2C19 was much slower. The main Phase I metabolite was M1 formed by the removal of phenyl and metabolite M2 with hydroxyl in the para position of phenyl. Glucuronidation was the leading Phase II metabolism. Further study on pharmacokinetics of the metabolites would allow us to better understand the activity profile of ANT and to predict its potential clinical applications. Ultimately, further investigation of the activity profile of the new hydroxylated M2 metabolite of ANT might result in an active substance with a different pharmacological profile than the parent molecule, and potentially a new drug candidate

    Non-imidazole-based histamine H3 receptor antagonists with anticonvulsant activity in different seizure models in male adult rats

    Get PDF
    A series of twelve novel non-imidazole-based ligands (3-14) was developed and evaluated for its in vitro binding properties at the human histamine H3 receptor (hH3R). The novel ligands were investigated for their in vivo protective effects in different seizure models in male adult rats. Among the H3R ligands (3-14) tested, ligand 14 showed significant and dose-dependent reduction in the duration of tonic hind limb extension in maximal electroshock (MES)-induced seizure model subsequent to acute systemic administration (5, 10, and 20 mg/kg, intraperitoneally), whereas ligands 4, 6, and 7 without appreciable protection in MES model were most promising in pentylenetetrazole (PTZ) model. Moreover, the protective effect observed for ligand 14 in MES model was lower than that observed for the reference drug phenytoin and was entirely abrogated when rats were co-administered with the brain-penetrant H1R antagonist pyrilamine (PYR) but not the brain-penetrant H2R antagonist zolantidine (ZOL), demonstrating that histaminergic neurotransmission by activation of postsynaptically located H1Rs seems to be involved in the protective action. On the contrary, PYR and ZOL failed to abrogate the full protection provided by 4 in PTZ model and the moderate protective effect by 14 in strychnine (STR) model. Moreover, the experimental and in silico estimation of properties such as metabolism was performed for five selected test compounds. Also, lipophilicity using planar reversed-phase thin-layer chromatography method was included for better understanding of the molecular properties of the tested compounds. Additionally, the absorption, distribution, metabolism, and elimination and toxicity parameters were evaluated for the most promising compounds 2, 4, 6, 7, and 14 utilizing in vitro methods. These interesting results highlight the potential of H3R ligands as new antiepileptic drugs or as adjuvants to available epilepsy medications
    corecore