39 research outputs found
The Golgin Tether Giantin Regulates the Secretory Pathway by Controlling Stack Organization within Golgi Apparatus
Golgins are coiled-coil proteins that play a key role in the regulation of Golgi architecture and function. Giantin, the largest golgin in mammals, forms a complex with p115, rab1, GM130, and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), thereby facilitating vesicle tethering and fusion processes around the Golgi apparatus. Treatment with the microtubule destabilizing drug nocodazole transforms the Golgi ribbon into individual Golgi stacks. Here we show that siRNA-mediated depletion of giantin resulted in more dispersed Golgi stacks after nocodazole treatment than by control treatment, without changing the average cisternal length. Furthermore, depletion of giantin caused an increase in cargo transport that was associated with altered cell surface protein glycosylation. Drosophila S2 cells are known to have dispersed Golgi stacks and no giantin homolog. The exogenous expression of mammalian giantin cDNA in S2 cells resulted in clustered Golgi stacks, similar to the Golgi ribbon in mammalian cells. These results suggest that the spatial organization of the Golgi ribbon is mediated by giantin, which also plays a role in cargo transport and sugar modifications
COVID-19 Convalescent Plasma Therapy Decreases Inflammatory Cytokines: A Randomized Controlled Trial
This study examined the role that cytokines may have played in the beneficial outcomes found when outpatient individuals infected with SARS-CoV-2 were transfused with COVID-19 convalescent plasma (CCP) early in their infection. We found that the pro-inflammatory cytokine IL-6 decreased significantly faster in patients treated early with CCP. Participants with COVID-19 treated with CCP later in the infection did not have the same effect. This decrease in IL-6 levels after early CCP treatment suggests a possible role of inflammation in COVID-19 progression. The evidence of IL-6 involvement brings insight into the possible mechanisms involved in CCP treatment mitigating SARS-CoV-2 severity
Dynamics of Inflammatory Responses After SARS-CoV-2 Infection by Vaccination Status in the USA: A Prospective Cohort Study
BACKGROUND: Cytokines and chemokines play a critical role in the response to infection and vaccination. We aimed to assess the longitudinal association of COVID-19 vaccination with cytokine and chemokine concentrations and trajectories among people with SARS-CoV-2 infection.
METHODS: In this longitudinal, prospective cohort study, blood samples were used from participants enrolled in a multi-centre randomised trial assessing the efficacy of convalescent plasma therapy for ambulatory COVID-19. The trial was conducted in 23 outpatient sites in the USA. In this study, participants (aged ≥18 years) were restricted to those with COVID-19 before vaccination or with breakthrough infections who had blood samples and symptom data collected at screening (pre-transfusion), day 14, and day 90 visits. Associations between COVID-19 vaccination status and concentrations of 21 cytokines and chemokines (measured using multiplexed sandwich immunoassays) were examined using multivariate linear mixed-effects regression models, adjusted for age, sex, BMI, hypertension, diabetes, trial group, and COVID-19 waves (pre-alpha or alpha and delta).
FINDINGS: Between June 29, 2020, and Sept 30, 2021, 882 participants recently infected with SARS-CoV-2 were enrolled, of whom 506 (57%) were female and 376 (43%) were male. 688 (78%) of 882 participants were unvaccinated, 55 (6%) were partly vaccinated, and 139 (16%) were fully vaccinated at baseline. After adjusting for confounders, geometric mean concentrations of interleukin (IL)-2RA, IL-7, IL-8, IL-15, IL-29 (interferon-λ), inducible protein-10, monocyte chemoattractant protein-1, and tumour necrosis factor-α were significantly lower among the fully vaccinated group than in the unvaccinated group at screening. On day 90, fully vaccinated participants had approximately 20% lower geometric mean concentrations of IL-7, IL-8, and vascular endothelial growth factor-A than unvaccinated participants. Cytokine and chemokine concentrations decreased over time in the fully and partly vaccinated groups and unvaccinated group. Log
INTERPRETATION: Initially and during recovery from symptomatic COVID-19, fully vaccinated participants had lower concentrations of inflammatory markers than unvaccinated participants suggesting vaccination is associated with short-term and long-term reduction in inflammation, which could in part explain the reduced disease severity and mortality in vaccinated individuals.
FUNDING: US Department of Defense, National Institutes of Health, Bloomberg Philanthropies, State of Maryland, Mental Wellness Foundation, Moriah Fund, Octapharma, HealthNetwork Foundation, and the Shear Family Foundation
The Golgin Tether Giantin Regulates the Secretory Pathway by Controlling Stack Organization within Golgi Apparatus
Golgins are coiled-coil proteins that play a key role in the regulation of Golgi architecture and function. Giantin, the largest golgin in mammals, forms a complex with p115, rab1, GM130, and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), thereby facilitating vesicle tethering and fusion processes around the Golgi apparatus. Treatment with the microtubule destabilizing drug nocodazole transforms the Golgi ribbon into individual Golgi stacks. Here we show that siRNA-mediated depletion of giantin resulted in more dispersed Golgi stacks after nocodazole treatment than by control treatment, without changing the average cisternal length. Furthermore, depletion of giantin caused an increase in cargo transport that was associated with altered cell surface protein glycosylation. Drosophila S2 cells are known to have dispersed Golgi stacks and no giantin homolog. The exogenous expression of mammalian giantin cDNA in S2 cells resulted in clustered Golgi stacks, similar to the Golgi ribbon in mammalian cells. These results suggest that the spatial organization of the Golgi ribbon is mediated by giantin, which also plays a role in cargo transport and sugar modifications
Measuring autophagosome flux
<p>Macroautophagy/autophagy is a proteolytic pathway that is involved in both bulk degradation of cytoplasmic proteins as well as in selective degradation of cytoplasmic organelles. Autophagic flux is often defined as a measure of autophagic degradation activity, and many techniques exist to assess autophagic flux. Although these techniques have generated invaluable information about the autophagic system, the quest continues for developing methods that not only enhance sensitivity and provide a means of quantification, but also accurately reflect the dynamic character of the pathway. Based on the theoretical framework of metabolic control analysis, where the autophagosome flux is the quantitative description of the rate a flow along a pathway, here we treat the autophagy system as a multi-step pathway. We describe a single-cell fluorescence live-cell imaging-based approach that allows the autophagosome flux to be accurately measured. This method characterizes autophagy in terms of its complete autophagosome and autolysosome pool size, the autophagosome flux, J, and the transition time, Ï„, for autophagosomes and autolysosomes at steady state. This approach provides a sensitive quantitative method to measure autophagosome flux, pool sizes and transition time in cells and tissues of clinical relevance.</p> <p><b>Abbreviations</b>: ATG5/APG5, autophagy-related 5; GFP, green fluorescent protein; LAMP1, lysosomal-associated membrane protein 1; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; J, flux; MEF, mouse embryonic fibroblast; MTOR, mechanistic target of rapamycin kinase; <i>nA</i>, number of autophagosomes; <i>nAL</i>, number of autolysosomes; <i>nL</i>, number of lysosomes; p-MTOR, phosphorylated mechanistic target of rapamycin kinase; RFP, red fluorescent protein; siRNA, small interfering RNA; Ï„, transition time; TEM, transmission electron microscopy.</p
Giantin RNAi did not change the cisternal lengths of Golgi mini-stacks generated by nocodazole treatment.
<p>(A) Nocodazole, giantin siRNA-, and mock-treated cells were processed for electron microscopy. Bar, 333 nm. (B) Average length of Golgi cisternae in a Golgi stack in approximately 10 different cells. Bars represent SEM (n = ∼10 cells).</p
Giantin RNAi enhanced anterograde trafficking and changed surface glycosylation patterns.
<p>(A) Giantin siRNA- and mock-treated cells were transfected with VSV-G-tsO45-YFP and incubated at the restrictive temperature of 40°C overnight before shifting them to the permissive temperature of 32°C. Cells were surface labeled for VSV-G. Cell images were captured and analyzed using Image J and Photoshop (n = ∼20 cells). Error bars represent SEM of three independent experiments. (B) SEAP was increased by giantin RNAi. HeLa cells stably expressing SEAP were transfected with siRNAs. After 90 h, the cells were washed and fresh culture media were added. After 6 and 24 h, respectively, culture supernatants were collected and processed for SEAP activity measurement. The ratio of the activities after 6 and 24 h are shown in the graph. Bars, SD (n = 3). (C) Giantin siRNA- or mock-treated cells were surface-labeled with FITC-lectins and analyzed by flow cytometry. SucWGA does not bind to sialyl-sugar moieties, unlike the native form, but retains its specificity to N-acetylglucosamine.</p
Recommended from our members
Target specific serologic analysis of COVID-19 convalescent plasma
This study compared the performance of four serology assays for Coronavirus Disease 2019 (COVID-19) and investigated whether COVID-19 disease history correlates with assay performance. Samples were tested at Northshore using the Elecsys Anti-SARS-CoV-2 (Roche Diagnostics), Access SARS-CoV-2 IgG anti-RBD (Beckman Coulter), and LIAISON SARS-CoV-2 S1/S2 IgG (DiaSorin) as well as at Genalyte using Maverick Multi-Antigen Serology Panel. The study included one hundred clinical samples collected before December 2019 and ninety-seven samples collected from convalescent plasma donors originally diagnosed with COVID-19 by PCR. COVID-19 disease history was self-reported by the plasma donors. There was no difference in specificity between the assays tested. Clinical sensitivity of these four tests was 98% (Genalyte), 96% (Roche), 92% (DiaSorin), and 87% (Beckman). The only statistically significant differences in clinical sensitivity was between the Beckman assay and both Genalyte and Roche assays. Convalescent plasma donor characteristics and disease symptoms did not correlate with false negative results from the Beckman and DiaSorin assays. All four tests showed high specificity (100%) and varying sensitivities (89–98%). No correlations between disease history and serology results were observed. The Genalyte Multiplex assay showed as good or better sensitivity to three other previously validated assays with FDA Emergency Use Authorizations.</p
Target specific serologic analysis of COVID-19 convalescent plasma.
This study compared the performance of four serology assays for Coronavirus Disease 2019 (COVID-19) and investigated whether COVID-19 disease history correlates with assay performance. Samples were tested at Northshore using the Elecsys Anti-SARS-CoV-2 (Roche Diagnostics), Access SARS-CoV-2 IgG anti-RBD (Beckman Coulter), and LIAISON SARS-CoV-2 S1/S2 IgG (DiaSorin) as well as at Genalyte using Maverick Multi-Antigen Serology Panel. The study included one hundred clinical samples collected before December 2019 and ninety-seven samples collected from convalescent plasma donors originally diagnosed with COVID-19 by PCR. COVID-19 disease history was self-reported by the plasma donors. There was no difference in specificity between the assays tested. Clinical sensitivity of these four tests was 98% (Genalyte), 96% (Roche), 92% (DiaSorin), and 87% (Beckman). The only statistically significant differences in clinical sensitivity was between the Beckman assay and both Genalyte and Roche assays. Convalescent plasma donor characteristics and disease symptoms did not correlate with false negative results from the Beckman and DiaSorin assays. All four tests showed high specificity (100%) and varying sensitivities (89-98%). No correlations between disease history and serology results were observed. The Genalyte Multiplex assay showed as good or better sensitivity to three other previously validated assays with FDA Emergency Use Authorizations