246 research outputs found

    Quantum cascade photonic crystal surface emitting injection laser

    Get PDF
    A surface emitting quantum cascade injection laser is presented. Direct surface emission is obtained by using a 2D photonic-band-gap structure that simultaneously acts as a microcavity. The approach may allow miniaturization and on-chip-integration of the devices

    Scars on quantum networks ignore the Lyapunov exponent

    Full text link
    We show that enhanced wavefunction localization due to the presence of short unstable orbits and strong scarring can rely on completely different mechanisms. Specifically we find that in quantum networks the shortest and most stable orbits do not support visible scars, although they are responsible for enhanced localization in the majority of the eigenstates. Scarring orbits are selected by a criterion which does not involve the classical Lyapunov exponent. We obtain predictions for the energies of visible scars and the distributions of scarring strengths and inverse participation ratios.Comment: 5 pages, 2 figure

    Fabrication methods for a quantum cascade photonic crystal surface emitting laser

    Get PDF
    Conventional quantum cascade (QC) lasers are intrinsically edge-emitting devices with mode confinement achieved via a standard mesa stripe configuration. Surface emission in edge emitting QC lasers has therefore necessitated redirecting the waveguided laser emission using a second order grating. This paper describes the methods used to fabricate a 2D photonic crystal (PC) structure with or without a central defect superimposed on an electrically pumped QC laser structure with the goal of achieving direct surface emission. A successful systematic study of PC hole radius and spacing was performed using e-beam lithography. This PC method offers the promise of a number of interesting applications, including miniaturization and integration of QC lasers

    Fabrication technologies for quantum cascade photonic-crystal microlasers

    Get PDF
    In this paper we describe the technological and fabrication methods necessary to incorporate both photonic and electronic-band engineering in order to create novel surface-emitting quantum cascade microcavity laser sources. This technology offers the promise of several innovative applications such as the miniaturization of QC lasers, and multi-wavelength two-dimensional laser arrays for spectroscopy, gas-sensing and imaging. This approach is not limited to light-emitting devices, and may be efficiently applied to the development of mid- and far-infrared normal-incidence detectors

    Ray chaos in optical cavities based upon standard laser mirrors

    Full text link
    We present a composite optical cavity made of standard laser mirrors; the cavity consists of a suitable combination of stable and unstable cavities. In spite of its very open nature the composite cavity shows ray chaos, which may be either soft or hard, depending on the cavity configuration. This opens a new, convenient route for experimental studies of the quantum aspects of a chaotic wave field.Comment: 4 pages, 3 figures, 1 tabl

    Electronic states in heterostructures formed by ultranarrow layers

    Full text link
    Low-energy electronic states in heterosrtuctures formed by ultranarrow layer (single or several monolayers thickness) are studied theoretically. The host material is described within the effective mass approximation and effect of ultranarrow layers is taken into account within the framework of the transfer matrix approach. Using the current conservation requirement and the inversion symmetry of ultranarrow layer, the transfer matrix is written through two phenomenological parameters. The binding energy of localized state, the reflection (transmission) coefficient for the single ultranarrow layer case, and the energy spectrum of superlattice are determined by these parameters. Spectral dependency of absorption in superlattice due to photoexcitation of electrons from localized states into minibands is strongly dependent on the ultranarrow layers characteristics. Such a dependency can be used for verification of the transfer matrix parameters.Comment: 7 pages, 7 figure

    Gain without inversion in a biased superlattice

    Full text link
    Intersubband transitions in a superlattice under homogeneous electric field is studied within the tight-binding approximation. Since the levels are equi-populated, the non-zero response appears beyond the Born approximation. Calculations are performed in the resonant approximation with scattering processes exactly taken into account. The absorption coefficient is equal zero for the resonant excitation while a negative absorption (gain without inversion) takes place below the resonance. A detectable gain in the THz spectral region is obtained for the low-doped GaAsGaAs-based superlattice and spectral dependencies are analyzed taking into account the interplay between homogeneous and inhomogeneous mechanisms of broadening.Comment: 6 pages, 4 figure

    Nonequilibrium Green's function theory for transport and gain properties of quantum cascade structures

    Full text link
    The transport and gain properties of quantum cascade (QC) structures are investigated using a nonequilibrium Green's function (NGF) theory which includes quantum effects beyond a Boltzmann transport description. In the NGF theory, we include interface roughness, impurity, and electron-phonon scattering processes within a self-consistent Born approximation, and electron-electron scattering in a mean-field approximation. With this theory we obtain a description of the nonequilibrium stationary state of QC structures under an applied bias, and hence we determine transport properties, such as the current-voltage characteristic of these structures. We define two contributions to the current, one contribution driven by the scattering-free part of the Hamiltonian, and the other driven by the scattering Hamiltonian. We find that the dominant part of the current in these structures, in contrast to simple superlattice structures, is governed mainly by the scattering Hamiltonian. In addition, by considering the linear response of the stationary state of the structure to an applied optical field, we determine the linear susceptibility, and hence the gain or absorption spectra of the structure. A comparison of the spectra obtained from the more rigorous NGF theory with simpler models shows that the spectra tend to be offset to higher values in the simpler theories.Comment: 44 pages, 16 figures, appearing in Physical Review B Dec 200

    Far-infrared surface-plasmon quantum-cascade lasers at 21.5 mu m and 24 mu m wavelengths

    Get PDF
    Quantum-cascade lasers operating above 20 mum (at lambda similar to 21.5 mum and lambda similar to 24 mum) wavelength are reported. Pulsed operation was obtained up to 140 K and with a peak power of a few milliwatts at cryogenic temperatures. Laser action originates from interminiband transitions in "chirped" superlattice active regions. The waveguides are based on surface-plasmon modes confined at a metal-semiconductor interface. The wavelengths were chosen in order to avoid major phonon absorption bands, which are particularly strong at energies just above the reststrahlen band. We also report on a 21.5-mum-wavelength laser based on a two-sided interface-plasmon waveguide. (C) 2001 American Institute of Physics

    Dissipation and Decoherence in Nanodevices: a Generalized Fermi's Golden Rule

    Full text link
    We shall revisit the conventional adiabatic or Markov approximation, which --contrary to the semiclassical case-- does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally pointed out and partially solved by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, which (i) is physically justified under the same validity restrictions of the conventional Markov approach, (ii) in the semiclassical limit reduces to the standard Fermi's golden rule, and (iii) describes a genuine Lindblad evolution, thus providing a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, the dependence of our approximation on the specific choice of the subsystem (that include the common partial trace reduction) does not threaten positivity, and quantum scattering rates are well defined even in case the subsystem is infinitely extended/has continuous spectrum.Comment: 6 pages, 0 figure
    • …
    corecore