195 research outputs found

    Tibial fractures in the dog and cat: Options for management

    Get PDF
    [No abstract available

    Locking plates in veterinary orthopaedics

    Get PDF
    Locking bone plates are now being used in veterinary orthopaedics. They reflect an evolution in the principles of application, design and biomechanics from the traditional dynamic compression plate. Locking plates have replaced dynamic compression plates in human orthopaedic surgery as they offer significant biomechanical and biological advantages over standard compression plates. There are multiple locking plate systems available in the veterinary market including several veterinary procedure-specific designs. This paper reviews the biomechanics and application of locking plates relevant to veterinary orthopaedic surgery and compares three of the commonly available veterinary locking plate systems

    Condensate fraction in liquid 4He at zero temperature

    Full text link
    We present results of the one-body density matrix (OBDM) and the condensate fraction n_0 of liquid 4He calculated at zero temperature by means of the Path Integral Ground State Monte Carlo method. This technique allows to generate a highly accurate approximation for the ground state wave function Psi_0 in a totally model-independent way, that depends only on the Hamiltonian of the system and on the symmetry properties of Psi_0. With this unbiased estimation of the OBDM, we obtain precise results for the condensate fraction n_0 and the kinetic energy K of the system. The dependence of n_0 with the pressure shows an excellent agreement of our results with recent experimental measurements. Above the melting pressure, overpressurized liquid 4He shows a small condensate fraction that has dropped to 0.8% at the highest pressure of p = 87 bar.Comment: 12 pages. 4 figures. Accepted for publication on "Journal of Low Temperature Physics

    Path Integral Monte Carlo study of phonons in the bcc phase of 4^4He

    Full text link
    Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structure factor of solid 4^4He in the bcc phase at a finite temperature of T = 1.6 K and a molar volume of 21 cm3^3. Both the single-phonon contribution to the dynamic structure factor and the total dynamic structure factor are evaluated. From the dynamic structure factor, we obtain the phonon dispersion relations along the main crystalline directions, [001], [011] and [111]. We calculate both the longitudinal and transverse phonon branches. For the latter, no previous simulations exist. We discuss the differences between dispersion relations resulting from the single-phonon part vs. the total dynamic structure factor. In addition, we evaluate the formation energy of a vacancy.Comment: 10 figure

    Distal normograde intramedullary pin and locking plate placement in the canine humerus: A cadaveric study

    Get PDF
    Objective: To identify a repeatable anatomic landmark for pin insertion and to describe the technique for placement of a distal normograde intramedullary (IM) pin of approximately 35% of the IM diameter using this approach combined with a locking compression plate (LCP) on the medial aspect of the canine humerus. Study Design: Ex vivo anatomic study. Sample Population: Canine cadavers (n=10 Greyhounds). Methods: An anatomic landmark for pin insertion was identified based on three-dimensional reconstructions of previous elbow computed tomography studies and cadaveric dissection of the medial aspect of the humeral condyle. Bilateral distal normograde IM pin and LCP placement were performed and confirmed radiographically and by disarticulation and sagittal sectioning. Results: The anatomic landmark for pin insertion was consistently identified in each specimen using the technique described. Distal normograde insertion of a 3.5 mm IM pin was possible in Greyhound cadaveric humeri at the described location in conjunction with a 3.5 mm LCP with fixed angle, locked screws. A monocortical locking screw was required to avoid interference with the IM pin in 28 of 60 of the 3 proximal screw holes. No pin interference was encountered in any of the distal screw holes. Conclusion: The anatomic landmark and technique described in our study enabled repeatable successful placement of a distal normograde IM pin of approximately 35% of the IM diameter combined with an LCP on the medial aspect of the canine humerus. This technique may be useful for locking plate-rod fixation of distal humeral diaphyseal fractures

    Pair Excitations and Vertex Corrections in Fermi Fluids

    Full text link
    Based on an equations--of--motion approach for time--dependent pair correlations in strongly interacting Fermi liquids, we have developed a theory for describing the excitation spectrum of these systems. Compared to the known ``correlated'' random--phase approximation (CRPA), our approach has the following properties: i) The CRPA is reproduced when pair fluctuations are neglected. ii) The first two energy--weighted sumrules are fulfilled implying a correct static structure. iii) No ad--hoc assumptions for the effective mass are needed to reproduce the experimental dispersion of the roton in 3He. iv) The density response function displays a novel form, arising from vertex corrections in the proper polarisation. Our theory is presented here with special emphasis on this latter point. We have also extended the approach to the single particle self-energy and included pair fluctuations in the same way. The theory provides a diagrammatic superset of the familiar GW approximation. It aims at a consistent calculation of single particle excitations with an accuracy that has previously only been achieved for impurities in Bose liquids.Comment: to be published in: JLTP (2007) Proc. Int. Symp. QFS2006, 1-6 Aug. 2006, Kyoto, Japa

    Dynamics of liquid 4He in Vycor

    Full text link
    We have measured the dynamic structure factor of liquid 4He in Vycor using neutron inelastic scattering. Well-defined phonon-roton (p-r) excitations are observed in the superfluid phase for all wave vectors 0.3 < Q < 2.15. The p-r energies and lifetimes at low temperature (T = 0.5 K) and their temperature dependence are the same as in bulk liquid 4He. However, the weight of the single p-r component does not scale with the superfluid fraction (SF) as it does in the bulk. In particular, we observe a p-r excitation between T_c = 1.952 K, where SF = 0, and T_(lambda)=2.172 K of the bulk. This suggests, if the p-r excitation intensity scales with the Bose condensate, that there is a separation of the Bose-Einstein condensation temperature and the superfluid transition temperature T_c of 4He in Vycor. We also observe a two-dimensional layer mode near the roton wave vector. Its dispersion is consistent with specific heat and SF measurements and with layer modes observed on graphite surfaces.Comment: 3 pages, 4 figure

    New excitations in bcc 4^{4}He - an inelastic neutron scattering study

    Full text link
    We report neutron scattering measurements on bcc solid 4^{4}% He. We studied the phonon branches and the recently discovered ''optic-like'' branch along the main crystalline directions. In addition, we discovered another, dispersionless "optic-like'' branch at an energy around 1 meV (∼\sim~11K). The properties of the two "optic-like" branches seem different. Since one expects only 3 acoustic phonon branches in a monoatomic cubic crystal, these new branches must represent different type of excitations. One possible interpretation involves localized excitations unique to a quantum solid.Comment: 4 pages, 3 figures, accepted by PRB, Rapid Communication

    A Wave Function Describing Superfluidity in a Perfect Crystal

    Get PDF
    We propose a many-body wave function that exhibits both diagonal and off-diagonal long-range order. Incorporating short-range correlations due to interatomic repulsion, this wave function is shown to allow condensation of zero-point lattice vibrations and phase rigidity. In the presence of an external velocity field, such a perfect crystal will develop non-classical rotational inertia, exhibiting the supersolid behavior. In a sample calculation we show that the superfluid fraction in this state can be as large as of order 0.01 in a reasonable range of microscopic parameters. The relevance to the recent experimental evidence of a supersolid state by Chan and Kim is discussed.Comment: final version to be published in Journal of Statistical Mechanics: Theory and Experimen
    • …
    corecore