142 research outputs found
Nonlinear electron-phonon coupling in doped manganites
We employ time-resolved resonant x-ray diffraction to study the melting of
charge order and the associated insulator-metal transition in the doped
manganite PrCaMnO after resonant excitation of a
high-frequency infrared-active lattice mode. We find that the charge order
reduces promptly and highly nonlinearly as function of excitation fluence.
Density functional theory calculations suggest that direct anharmonic coupling
between the excited lattice mode and the electronic structure drive these
dynamics, highlighting a new avenue of nonlinear phonon control
Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5
THz-frequency optical pulses can resonantly drive selected vibrational modes
in solids and deform their crystal structure. In complex oxides, this method
has been used to melt electronic orders, drive insulator to metal transitions
or induce superconductivity. Strikingly, coherent interlayer transport strongly
reminiscent of superconductivity can be transiently induced up to room
temperature in YBa2Cu3O6+x. By combining femtosecond X-ray diffraction and ab
initio density functional theory calculations, we determine here the crystal
structure of this exotic non-equilibrium state. We find that nonlinear lattice
excitation in normal-state YBa2Cu3O6+x at 100 K causes a staggered
dilation/contraction of the Cu-O2 intra/inter- bilayer distances, accompanied
by anisotropic changes in the in-plane O-Cu-O bond buckling. Density functional
theory calculations indicate that these motions cause dramatic changes in the
electronic structure. Amongst these, the enhancement in the dx2-y2 character of
the in-plane electronic structure is likely to favor superconductivity.Comment: 28 pages, including Supplemen
- …